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PART I

CHAPTER I

INTRODUCTION

This report describes modeling of imploding plasma radi-
ation sources (at various 1levels of description) during the
contract year 1982. The report is divided into two parts.
Part I describes zéro-D models, which use ordinary differen-
tial equations (and their numerical or approximate analyti-
cal solution) to describe the dynamics and radiation from
imploding wire or gas-puff plasma, with the approximation
that the plasmas are uniform. For completeness, Part I also
includes a preliminary description of some results actually
obtained at the beginning of the 1983 contract year.1
These refer to first-order nonadiabatic corrections to for-
mulas for radiation from quasi-adiabatic pinch plasmas.

Part I concludes with a report on analysis of a 1D ide-
alized model for nonlinear field penetration into profile-
invariant plasma where the conductivity (i.e., field diffu-
sion rate) depends on field strength through Joule heating,
etec.

Part II describes 1D MHD modeling (or more exactly, EMHD
modeling, since the electric field E, rather than magnetic
field, is explicitly advanced in the code), with related
discoveries about the nonlinear physics and the numerical
techniques for advancing the variables. Much of this code

1. The contract reported on here and NRL Contract NOO173-
80-C-0202 have been merged into one new contract,
DNAQOO1-83-C-0204 covering 02-03-83 to 03-31-84,
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gi development has been carried out so as to be directly usable

{E in 2D as well, although the 2D r-z code is not yet near

’:E completion.

) The purpose of the formulations described in Part I is
;; to provide semi-quantitative insight and understanding into
iﬁ the behavior and scaling of plasma radiation source behav-
{3 ior, using simplified model assumptions. The purpose of the

code and physics described in Part II is to compute quanti-
f?& tatively the behavior of plasma radiation sources with ade-
lg; quate cylindrical symmetry and to provide the refinements
*ﬁi and modifications to the simpler less quantitative scaling
7= laws discussed in Part I, 1including now (e.g.,) the radial
profiles and more detailed radiation transport which are
omitted in Part I for simplicity.
fh A simple "scoping" code is discussed in Chapter II of

. Part I. In this code called RUNIN, the plasma motion, heat-
& ing and current are described by a set of ordinary differen-
, tial equations. The code follows three (or two) successive
' stages in the evolution of a wire array {(or annular gas
) puff) discharge: the motion and expansion of individual
?i wire plasmas until coalescence to an annulus, the motion of
ffﬂ the annular plasma (with finite, time-dependent thickness,
}fi radius and temperature) until formation of a non-hollow
#fi pinch, and the compression of the assembled pinch once the
aj? annulus closes. In each stage the model plasma has uniforn
:ig density and temperature. Radiation from the wire plasmas is
i:; assumed to be blackbody. The annular and pinch phas:2s use
oY blackbody-limited otherwise-transparent radiative cooling
%:f rates based on c¢ollisional-radiative equilibrium calcula-
.i: tions without doing radiative transport. The physical basis
e

g

of the code was discussed in JAYCOR Report J207-82-0091.
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Simple scaling laws are derived in Chapter III of Part I
for the radiation from a quasi-adiabatically bouncing pinch,
in which the radiative loss is a small fraction of the peak
thermal energy. The dynamics of the wire-plasma and annular
phases are also discussed, with some formulas given to de-
scribe initial conditions for the pinch phase. The scaling
laws are used on uniform, optically-thin pinch plasma mod-
els, and corroborate I" dependence of the energetic radiated
energy (as observed at Physics International) over a limited
range of currents and plasma masses, (I=current through the
plasma). A first-order correction to the minimum radius and
maximum temperature of the implosion is also given, for
small but non-negligible radiative energy loss dominated by
energetic, transparent radiation. Caveats to the model are
described.

A simple model for the nonlinear penetration of electric
field into a finite plasma 1is discussed in Chapter IV of
Part I, in which the <conductivity (and thus the diffusion
coefficient) is altered locally in time and space by heating
and ionization induced by the diffusing field. A 1D comput-
er simulation is described, but it is concluded that the
restrictions on the model are too severe to accurately por-
tray the realities of field penetration in imploding annular
plasmas, and the reader i{s referred to the more advanced
computational results of Part II.

This effort is intended to be primarily in support of
the DNA objectives of understanding and projecting an ap-
proximate scaling of plasma radiation sources. An explicit
tie-in with radiation physics work funded by DNA at the
Naval Research Laboratory (NRL) can be seen from the central
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role played in this analysis by the curve of energetic-pho-

ton radiative power as a function of plasma electron temper-
ature (it also depends weakly on plasma density and photon
density) - such curves are supplied by the NRL effort. Less
visible in this simplified analysis, but also important in
the more quantitative calculations enabled by Part II of
this report, are the effects of radiation transport on the
energetics and the radial profiles of temperature, etc., in
imploding plasmas. Here again there is interaction with the
plasma radiation physics work at NRL, both in the use of
transport algorithms developed at NRL, and in supplying NRL
with reasonable implosion density and temperature histories
for post-processing of emission spec¢tral histories, etec.
The RUNIN scoping code described in Part I of this report
has been supplied to NRL, to use in conjunction with Its
more extensive radiation physics c¢odes as an inexpenasive,
approximate time-evolution package for densities and temper-
atures during implosions.

Formulas are given for energetic radiative yield (Y>) as
dependent on load mass (m) and length (1), experimentally
measurable current in the load (I), kinetic energy at the
beginning of the assembled pinch phase (e¢,), and atomic
physics parameters, such as the temperature (Tpk) at which
the energetic radiation is maximized.

By choosing either the load mass per unit length or the
current so as to optimize Y>, one derives a formula for
scaling of optimal energetic yield with lcad current I, in
the adiabatic limit where the radiative energy loss has only
a very small effect on the dynamics. Subject to the caveats
described in the report, we verify the scaling

Y* = I°*
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found by earlier, more empirical work at Physics Interna-
tional.

We also show, to first order, how this scaling of Y>
were I falls below I" at higher currents, due to the effects
of radiation in reducing the peak attainable temperature for
any given pinch initial conditions. Here 'first order'
refers to the quantity Y(rm)/(thermal energy), Y(rm) being
the total radiative energy (energetic + less energetic pho-

tons) lost between onset of the assembled pinch phase and

the time of minimum radius rm (i.e., peak compression).




- CHAPTER II

oS DEVELOPMENT OF THE RUNIN CODE

X
Iif For the assessment of Plasma Radiation Source design
§. feasibility, it is important to have an approximate scoping
o model that predicts implosion histories and scaling of radi-
~Ts ative output with the appropriate input design parameters.
g?w To this end the RUNIN c¢ode has been written, incorporating
Lfi (with modifications) the SAI "WIRES" Code describing the
{i dynamics of an imploding array of wires, the JAYCOR
F "SQUEEZE" Code describing the dynamics and energetics of a
ffﬂ pinching cylindrical plasma (with radiation the CRE ioniza-
o tion), and a "BRIDGE" code describing the intermediate annu-

lar plasma stage. For use in gas puff plasma modeling, the
j code can be started in the BRIDGE phase. This RUNIN code
o has been written, documented, run and debugged. It can also
i:; serve as the nucleus of a variational design optimization
o code .
}%
-
j:f: Af WIRES: EQUATIONS FOR THE IMPLOSION OF THE WIRE ARRAY -
Z:ﬁ: MODIFICATIONS AND UNDERLYING ASSUMPTIONS

1. The equations governing the wire-plasma radius a

.ff (its thickness, not its position) in the SAI WIRES code was

equivalent to the assumption that the radius has that value

T which gives pressure balance between the thermal pressure of
r. the wire and the magnetic pressure of its field. The tem- ’
.- perature is determined by assuming that the ZnachT“ black~- ;
b body radiative cooling exactly balances the IgR = nJ?ima‘’ é
P ]
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ohmic heating (based on full field penetration of the
'wire'). Here 95 is the Stefan-Boltzman constant, 2wal is
the surface area of a wire carrying current IN over cross-
sectional area wa? with resistivity n (resistance R). We
have demonstrated that this gives instantaneously quite fat
'wires' at early times if I is large and T small. Since the
expansion rate of ¢the wires is 1limited by one or a few
times the instantaneous sound speed, we have limited the
radius to a, + fcs(t)dt when this is less than the pressure-
balance radius. Besides being more physically correct, this
prevents the code from merging the Wires into an annular
plasma at very early ¢times before they could have merged
physically.

2. when the N wires with centers at radius L do fi-

nally merge, i.e., when

.
r.sin § -2 {11.13

(the tangency condition for a circular array of N circles of
radius g). they are replaced by an annular layer (Wwith outer
radius r, and inner radius rg) which has the same area as
the collection of wires

w(r% - rf) = Nrna? (11.2]

and has a geometric mean radius equal to the radius of cen-
ters of the wires: r,rs = rcz. The new velocity of the
outer surface r,, is given by conservation of kinetic energy
in the transition.

The use of the notation r, for the outer radius and ry
for the inner radius of the resulting annulus is intended

to conform (at least in subscripts) to the notation of the

RUNIN code, in which y, and y, are the outer and inner radii
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respectively. The <code announces the merge (both on the
terminal and in the output data file) and proceeds to the
integration of equations of motion for a uniform annular
plasma, using a high-precision package integration routine.
The magnetic field energy in the WIRES code includes‘a
contribution from positions inside the wire array. This is
physical, but should go to zero as the wires mérge to an
annulus, even if the approximate equations of the WIRES code
break down when the wires are c¢lose together. 1In the RUNIN

code we have taken this contribution zero as soon as the

wires merge. N

Consistent with the assumption of complete field pene- E%
tration of the individual wires, we have assumed uniform ?1
current density in the annular layer when it comes to calcu- Ei
lating energy density integrals, but we have assumed in the o
force equations that all the J x B force is applied to the Ei
outer surface. 1In fact, a real physical difference between fﬁ
wire array implosions and foil or annular gas puff implo- é.

sions may be that for wire array implosions the field pene-
tration i{s fairly complete early in the wires phase and
continues to be fairly complete after merging to an annulus,
while in foil or gas puff implosions the current may be
restricted to a relatively thin layer near the outer surface
of the annulus. The full 1D MHD code described [elsewhere
in this report] is capable of estimating the degree of field

[
« .

penetration into foils or gas puff annuli, and of showing ::

il the sensitivity of the implosion dynamics to the degree of
‘:T penetration, whereas the simpler model presented in this
E- section cannot investigate that question consistently. The
i: actual field penetration is discussed 1in more detail in
Qi Chapter II of Part II of this report.
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B. BRIDGE: EQUATIONS FOR THE UNIFORM ANNULAR PLASMA IMPLO- Z
~ SION g
The equations of motion of the annular plasma result -
from performing Sdr on the fluid equation and assuming that :3:
the density gradient 3n/dor remains zero except at the plasma ;?7
edges. This latter assumption, equivalent to 3/3r(Ve.v) = 0, :&:
requires v(r) of the form -
v(r) = k,r + k,r"'1 (11.31 Sﬁ
and the conditions v(r,) = F,. v(irg)=r, give equations for ;;
K, (Fry, Py Py, Pg) and k,(Pr,, r,, Pg, Pg): -
Kir, = ——g F, - Ty F [I1.4] 2]
191 1-r 1 T-r 5
po y . A
kz/l"s R s SRR M s 4 t‘,s. (II.5] .
Here r=ry/r,, the ratio of 1inner to outer radius, which is | f{
of course time-dependent (as are &k, and k,). In the inte- ;3
grated force equation (Tidman and Colombant, 1979)2 one has i?
then 1
- :: %1 dr + :: veVvdr = % El(r? - r§)+k;1n(r,/r,) &ﬁ
N YAy
-"- v 5 (P2 - id) (II1.6] oy
b, ,k_\,
3 The internal viscous stress tensor the the velocity %{f
% field of Equation {II.3] is divergenceless, so that all the EE\
f force comes from the thermal and magnetic pressure gradi- PO
L ents. For the net force we have
o
- fFY 9pdr = (n_ +n,) T - Brery) (11.71
g r e i 8 . ’
o
'S with B(r,) = 2I/cr, (in cgs units). ‘
B T
E 1 L
b e
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It will be seen that {if the velocity of the inner sur-
face remains finite as it <collapses to the origin, then the
tn term in Equation [II.6] is singular as rg - 0. It is
thus a mathematical feature of these approximate equations
that a finite excess pressure from the outside causes ry to
take on a momentarily infinite negative value as ry + O.
This lasts for zero duration and causes no physicl discrep-
ancy because the singularity is integrable and F, remains
finite. It does, however, mean that the numerical integra-
tion of the equations must be done cleverly and approxi-
mately near the time of ¢transition from annulus to plasma
cylinder. Since the integrating routine used (DGEAR)
shrinks its timestep when it finds larger accelerations,

|¥,] is arbitrarily limited to a reasonable value (10'’cm/

sec?) and the equations are carried forward approximately

for the remaining short (sub-nanosecond) time until r, = O.
fl: C. NUMERICAL INTEGRATOR PACKAGE

- While the WIRES subroutine calls a simple fixed-step

(ﬁ_ integrator subroutine (the same as in the original SAI WIRES

ég code), the BRIDGE and SQUEEZE subroutines use the IMSL Li-

iﬁ: brary DGEAR package, a variable-timestep predictor-corrector

ié integration routine designed for wuse with sets of stiff

o differential equationss. An override and exit is provided

fi{ when doing the integrations in the BRIDGE phase, so that the

igf inner radius goes to zero within some tolerance (10~ %cm)

i{ without going negative or shrinking the timestep

L indefinitely.

v

. 5,

o
4
a1

+
e ¥

% 12

e v
LGP NP

A
-
r

Ta Lt . Tt et e et e v e TN aT e RN
RO et L R T T i

-




a GRSt i el aat o ety B8 S g Ml ames et -t

D. RADIATIVE LOSS AND OUTPUT TERMS FOR THE ANNULAR AND
CYLINDRICAL PHASES

1. Temperature Dependence

While the use of blackbody emission {s thought to be a
good approximation in the WIRES phase of implosion because
the temperatures are low, we have changed over in the annu-
lar BRIDGE phase and in the cylindrical SQUEEZE phase of the
code to more sophisticated radiative output functions,
although at present the radiation cooling and output formu-
lae are based on transparency of the plasma to its energeti-
cally most important radiation, The collisional-radiative
equilibrium (CRE) model {s the basis for an emitted power

per ion-electron pair, F modeled in detail by Duston et

’
al.u. A Gaussian-splineragit to these results was obtained
by Térrys and this fit, 1incorporated in subroutine CREMIT,
is used in the code for the emitted power., This is overrid-
den by the blackbody emission if that limit is exceeded. At
.present there is no absorbed radiation per se,. A similar
calculation is done for the 1line radiation pdwer above a

¢critical photon energy E usually taken to be 1 keV,

ST’

2. Correction for Nonuniform Temperature and Density

The plasma in a real implosion is not isothermal or iso-
density, and is not fully transparent to its radiation. So
the radiative loss term is not simply

0 - 2 _ n2Y0.en?
Prad n(r} r:)t ni Z(T) F.

(T) (11.8]

ad

1

with average ionization state Z(T) but rather:
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Prad = /2wrdr n;(r) Z{T(r)} Frad{T(r)} [11.9]

in the optically thin limit,

BB »
Prad 2whr o T pp (11.10]

in the blackbody limit, and not expressible in closed form
except in these limits.

Yet a simplified implosion model, to be useful and show
correct trends, must include in some approximate way an
average radiation function with about the same magnitude and
dependence as the more exact problems, i.e., a suitable set

of parameters ni(O). r T(0), Pos T(») must be chosen,

nl
representing the heights and widths for the ni(r) and T(r)
distributions, and a function Rad(r,, ry, T) must be con-

structed, so that

2 (r} - r}) niz(T)Rad(r,, rs, T) = P (1r.11]

rad

for suitable Ki{ni(o), rn}. T{T(0), T(=), rT}. The proper
choice of such parameters and sujtable distributions for
density and temperature are being investigated using the
BLANKET code.

For the radiative output above 1 keV the effect of non-
isothermal temperature profiles in the assembling plasma is
indicated semiquantitatively by wusing the transparent CRE
model with Gaussian-plus-constant temperature profiles in a
Gaussian density profile. Figure II.1 shows the ratio of
radiated power above 1 keV for this distribution, in alumi-
num, to that for an isothermal aluminum plasma with the same
Gaussian density profile, as a function of the relative
width (rT) of the temperature profile, The temperature
distributions are chosen in this case to have the same cen-

tral temperature, and the temperature of the cooler outer

1k
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distribution. Both distributions are assumed for plasma cyl-
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parameter r, measures the relative width of the temperature

distribution (rT = o for isothermal limit).
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- region i{s varied as a parameter. For use with the RUNIN
- code, where the energetics are described by a single temper-
K. - ature, comparisons are made with the same average tempera-

iy ture rather than with the same central temperature.

E. CAVEATS TO THE RUNIN CODE

The code described above models the dynamics of uniform

.. plasma, either as (1) identical symmetrically-placed wire

plasmas of <circular cross section with forces acting at

~f: their centers, or (2) as an annulus of uniform density with

force acting on the outer surface and model equations for
m the motion of the inner radius, or (3) as a uniform z-pinch
driven at its outer surface by the net pressure (thermal
TN minus magnetic) but ohmically heated as though carrying
o uniform current (a feature easily generalized if the cur-
- rent-carrying area is known). The circuit equation coupling
3 the plasma load current to the generator voltage includes
. diode inductance and resistive impedance but does not pre-
sently include any currents not drawn in the load. The
radiative loss i{s assumed either transparent or (when this
:é exceeds blackbody) blackbody-limited. In the pinch phase
:;? this is probably a fair description, although the assump-
: tion of uniform temperature and density gives an overesti-
mate of the energetic radiation (as just discussed in Sec-
‘}t: tion D). In the case of annular plasmas with moderately
"?; high mass and 1large radius the radiation formula is less
gﬁ believable and tends to over-cool the plasma.

Time-integrated pinhole and streak photos of wire array

L implosions appear to indicate that for massive enough arrays
there is considerable plasma blowoff inward from the denser
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:. wire plasmas, forming either low-density plasma implosions 5
J- or plumesG. This phenomenon, though interesting, is not %
ﬂ} within the scope of the WIRES model, which assumes uniform j
v wire plasmas. Because of the observed advantages of gas- bt
- puff implosions, this wire blowoff phenomenon has not been -
}: further investigated here, even though it represents a sig- }
lj nificant deviation from the WIRES model. f%
o One-D MHD codes allowing radial resolution sometimes 2
- show the formation of a density and temperature spike on the b
L{ axis when the plasma annulus closes7. This is entirely t
o reasonable and physical, but represents another feature not
ff describable by a uniform-plasma model. In this case, how-
g ever, we hope to generalize the simplified model to allow L
. such a central compressed zone because the dynamics of gas k
Z; puff runs may be seriously affected as the dense central S
spike is radiatively cooled to allow further compression. ﬁw
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CHAPTER IIX

APPROXIMATE SCALING LAWS

A. WIRE PLASMA PHASE OF ARRAY IMPLOSIONS

The very-early-time behavior of wire array implosions,
involving the phase transitions of the material and the
associated "pause" (dip) in the <conductivity, is discussed
in the literature on exploding wires and is not treated
here. For practical modeling of the implosion dynamics, we
start with an initial temperature at which the plasma has no
more neutrals and is not dominated by strong coupling but
has classical conductivity determined by Coulomb collisions.

After an initial heating expansion, the individual wire
plasmas reach a local dynamic thermal equilibrium in their
own reference frames. For the case of N imploding wires,
local Bennett equilibrium. (i.e., pressure balance) gives an
equilibrium temperature T:

m, I*(tst,) m,
[1+Z(T)IT = T TSNeT — 3N b(t) (I11.1]
or
1+2(T,) 10~ IgA(tl)
™ T,(eV) = 52 [u(g/cﬁ7 T (111.2]

where mi is the mass of an ion, u is the total load mass

(all N wires) per unit 1length, Am is the atomic number of
the load and Iya ts the total current (in MA) in all the
wires., The degree of ionization Z(T) for aluminum at densi-

ties of order 102! jons/cm?® is shown in Figure III.1. The
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Degree of ionization Z (right-hand scale) and ionization
energy eI (left-hand scale) versus electron temperature

for aluminum in CRE at 10%! ions/cm’.
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individual wire-plasma radius p expands until blackbody
radiative loss equals the ohmic heating power and prevents

further heating except by increasing current. This occurs

A

at a wire-plasma radius given by

(27p2) (g T") = (—iq—) (5)z (Irr.3sl
B Tpca N
with ¢ the conductivity. Once the temperature is high

enough that o is determined by Coulomb collisions,

m 3/72

3 e 1 2T 3/2,_ . '
Y [16/?) (Zez) (“”\) (m—) = KoTev yAul CIII.4] :1

o

(so defining the constant Kq). When these wire plasmas just
merge, their centers are at radius pcsc(n/N) and the result-

ing annular layer has outer radius given by

r2 = [(N/2) + /YIN72F + csc (n/N) ] p2 (I11.5]
with
Z(T,)1I? 173 1176
L B ey T (111.6]
¢ B ‘

in terms of the current I, and temperature T, at time t,
(i.e., merge). (The geometrical factor in brackets is 8 for

6 wires and 22 for 12 wires.) Numerically,

I 2/3 )
o,(cm) = 172 (-l%ﬂﬂl) Z(T,)1/3T11;C?. [111.7]

and using the preceding information for T(I) in this expres-
sion one has
11/6

N8z, 3.

{1+2(T )} ]
m

pilem) = .123 ITEMA)[ R Lk W
T111.8]

N g LA

20

e, rl O
MR
PR

‘e .-...
P TR “L T - . . .
IRV, W TN W PN S L DRI 5 P a




G A R ML alalt) @ 2w e - - Ll aliagadiniiate, har o in st diagehads Mindt Siak i fadh At S At Radi*fedl “ ok Yok ‘Bl Yol

But this scaling of p, and r, with I~-? [or about I~'"% when
the Z(T(I)) dependence is included] holds only over a limit-
ed range of load mass and current.

As long as the wire-plasma radius p is not clamped by
blackbody loss, it expands at a rate proportional to the
sound speed, i.e., p =« {(1+Z(T)}*/2 I « Iu'’?, until the
plasmas merge. With p erut"2 and the radius of centers r.
moving as rch « I2/u, the merge condition p=r, sin(w/N)
determines the annulus formation in a dynamic¢ way, if this
merge occurs before radiation can limit 0. For constant
current the merge condition for non-equilibrated p (i.e.,

for high current) is

e = /772 ry/2N [(111.97
erf/in{r,/p csc(n/N)} '
where r, is the initial array radius. For N=6 wires this

gives p=0.1 r, and re *® 0.3 r, at merge. Thus, if radia-
tion does not limit the wire-plasma radii, the merge occurs
before very significant implosion has taken place, because
the superheated wires expand rapidly. One then has an annu-
lar plasma implosion (starting with inner radius/outer radi-
us = 1/2 for 6 wires) for more of the implosion than if the
wire plasma size had been radiation limited.

From the code and the scaling just discussed, we can

identify the following partially overlapping stages in the

x‘f WIRES phase of a wire-array implosion:

(1) Ohmic heating dominates; wires expand and heat;

vy
NG
YT AN
r 1
l. N .
I .

(2) Ohmic heating = PdV cooling (<« 5); wires expand;

«
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Y
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(3) Bennett equilibrium; Pth-PBso; {1+Z(T)}T = I%/uN. Radi-
ative cooling adjusts wire radius if T is low enough for

the radiation to be blackbody;

(4) Blackbody/Bennett equilibrium: {1+Z(T)}T = I%?/uN and
o« Z(T)1/312/3T-11/6N7/6, u’1/61'1’6N7/6.
(Not applicable if T becomes high enough for quasi-

transparent radiative loss.)

Merging of the wire plasmas may interrupt the process at
stage (2), (3) or (4), or there may be a further stage if
the wires overheat.

In the simple physics of the WIRES phase of the RUNIN
code, only stages (1) and (4) are explicitly included.
Figure II1.2 shows these stages, occupying roughly equal
fractions of the WIRES phase at constant driving voltage.

The modeling and scaling of this wires phase is impor-
tant to the radiation and dynamics in the later pinch phase
only through the way it scales the initial conditions of the
pinch phase (and in general through the duration of the
wires phase, if the generator pulse time is limited).

The radiative yield of the pinch depends on the initial
radius and temperature (at the beginning of the pinch phase)
as r~' T"'/2, Wnhile I%/uy is low enough, this goes as p~*/3
2.

B. ANNULAR PLASMA STAGE

The merging of wires produces a somewhat irregular annu-

lar plasma; ignoring the irregularities, one can derive
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Figure III.Z2.

20 40 60 80 100

Radial positions, current and energetic line radiation versus
time (in ns) for a typical RUNIN code run. The wires expand
until radiative cooling balances ohmic heating (dashed verti-
cal line marks the onset of such Blackbody-Bennett equilib-
rium). Inner and outer extent of the wires are shown in the
WIRES stage (radius of centers shown dashed); inner and outer
radii of the annulus are shown in the BRIDGE stage. Pinch
stage (SQUEEZE) onset occurs when inner radius goes to zero.
The run shown was for constant 3 MV voltage.
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differential equations for the inner and outer radii and the
temperature in various simplified models. The same models
and equations can be applied to the annular plasma formed by
the pinching of an annular gas puff from a supersonic ring
nozzle. Even with the simplest physical models, however, it
has not been possible to do the sort of analytic'modeling
here that has been possible for the later pinch phase of the
implosion. Here then the RUNIN code, or specifically its

> py -

BRIDGE subroutine, provides the only simple guide. The code

s

has been used to show, for example, that the ratio of final

to initial radii and temperatures for the annular phase are

S e v IR AR NS
T A

very insensitive to the initial radius.

To develop simple rules for expressing variables at the
end of the annular phase in terms of those at the beginning
of the annular phase, the BRIDGE subroutine was run for a
range of input variables. The "output variables" chosen for
examination were ratjios of final to initial radius, tempera-
ture, kinetic energy, and r/?, a variable which occurs in
the formula for radiative energy 1loss in the case of trans-
parent radiation. .

Table III.1 shows the percentage variation in the output
variables divided by ¢the dynamic range (maximum value/
minimum value) of the input variables, 1in the absence of
radiation. None of the output variables depend sensitively

on initial radius r,. The kinetic energy ratio e€_./e, is the

e ) S §
j- only output variable to have an interesting dependence on
S- the initial velocity vy of the annulus outer radius (i.e.,

on the initial kinetic energy e, of the annulus); the ratio

Ty
T
[NESEARY

IO N

i
of injitial to final values of r, T, and especially rv/T are

insensitive to v . The rYT ratio (final to initial, for

Pl

-
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Dependent Variables

n

2 It It KE il

2 KE e S 4

- T o KE r /T

N 1 1

S

3

$1 r. 0 0 0.6/2 0

3] 1

S .
2 v, ~.16/30 .13/30 -318/30 .09/30 -
) A
il

= T, .18/4 -.34/4 -.67/4 -.09/4

Table III.1. Variation in ratios of final to initial dynamical quantities
(shown by numbers in numerators) over dynamic range of ini-
tial conditions for the plasma annulus (shown by factors in
denominators; a factor of 30 in Vi’ for example, indicates a N
factor of 30 change, about some nominal value typical of the .
inward speed at the time the annulus is formed). Subscript f

refers to the time at which the center of the annulus closes.

v s e -~
U A
i

A zero indicates very weak dependence.
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perature of the annular plasma, Ti'

ratios depend on Tl'

1. The Nearly-Adiabatic Uniform Radiator

the annular phase) is also insensitive to the i{nitial tem-
although ¢the r and T

C. RADIATION SCALING AND DYNAMICS IN THE PINCH PHASE

The RUNIN code indicates that the temperature versus
radius behavior of the pinch phase lies fairly close to the
adiabatic law, for low-mass 1loads and low currents. The
rate of doing PdV work greatly exceeds both ohmic heating
and radiative loss except for a very brief interval near
minimum radius. In addition the code indicates, in agree-
ment with experiments, that the current does not change by
a large factor during the compression. These facts suggest
an approximate set of differential equations which can be
treated analytically, with some approximations, to yleld
formulas for the output of energetic radiation and for its
optimization. This section of the report treats first the
zero-order formulas that result for a pinch in the adiaba-
tic limit, and then the first-order correction when the
radiative energy loss deepens the implosion perceptibly but
not so much as to make the r-T trajectory deviate far from

the adiabatic one for very 1long during the implosion. The
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Ci utility of these formulas 1lies in the understanding they q
E}i provide of the central qualitative concept of how to design ﬁ
A -
;g{ and optimize an imploding radiator, and in their scaling H
Ji‘ with several variables at once - 1load mass, atomic mass =
&ﬁ number, initial conditions at the assembly of the plasma :ﬂ
P ’.',
3? pinch, total current delivered to the 1load, etc. They -
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reflect the facts that overdriving or underdriving the load
can result in a radiation pulse that is too short or too
¢co0l, or occurs at a less-than-optimal density; they indi-
cate what the optimal 1load current is for given conditions
at the formation of the pinch, and how it depends on the
load variables, how sensitive the radiation loss (s to devi-
ation from optimum, and what the peak attainable yield is as
a function of the variables, subject of course to the limi-
tations and approximations of the model. Finally, a discus-
sion is provided of the 1limitations of the model, and of
what happens to the predicted versus actually expected radi-
ative behavior,

We arrive ét simple formulas in two ways: first, by
simple dimensional evaluation of the time-integral of the
radiated power, and second, by a more careful evaluation
based on expansion of the integrand. Both techniques pre-
suppose that the plasma 1is nearly transparent to the ener-
getic radiation, and that is consistent with the load masses
of present and near-term experiments. We note that similar
techniques apply to neutron production from fusion targets
inasfar as the targets remain uniform cylindrical or spher-
ical plasmas, but to radiatively driven implosions only
inasfar as the radiation pressure varies nearly inversely
with load radius.

A uniform pinch with mass m, atomic mass m radius r,

i'
length ¢, and temperature Ti-Te-T is governed approximately

by the dynamical equation

mr = Z"rl(Pthermal - Pmag)’ [111710]
with
(m/mi)
Pehermayr = By (1*2)Ts Nyt —ET [1I1.11]
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and
2
! (ZI) in cgs units [111.12]

Here Z(T) is the degree of ionization and I is the pinch
current. This equation has the form

rr = aT - b (111.13]

when Z and I are nearly unchanged during the course of the
pinch. Here

a = 2(1+Z)/mi f111.v4] (
{
and l
2
= ;1 ) (I11.15]

When ohmic heating is negligible (as with short-duration ;
pinches with high conductivity) the temperature is governed ;
approximately by

T = -{(Cr/r) + £}T (III.16]

where C 13 an approximately constant adiabatic index, and
the radiative loss function f(r,T) will be neglected in the
adiabatic limit and used as a perturbation in deriving the
first-order corrections. The temperature model equation
arises from equating Pthe power, less radiative loss, with
the time derivative of 3/2N1(1+Z)T + Nieg, where ¢, is the

VA e T wn e . B

i
- mean ionization energy (as a function of T) and Ni-m/mi is .
Ffr the total number of ions being c¢compressed. The thermal
Bl
- -
}ff pressure is P . ni(1+Z)T. and
- - a e
[ d 3 3 32 iga
o2 o [3 Q)T+ ei] =[5 (1ezer ) ¢ 37 IT,[111.17]
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while Vz2xirr. When f i3 negligible this T equation can be
integrated to give the adiabatic law,

T/T, = (r,/m)C, [1I1.18]

.

with r, and T, the initial values at time t, when the pinch O
phase begins. This form for T is substituted into the force

equation, which can then be integrated once to give

- 2 - 2a(T-T,) + 2b&n(T/T,) (II1.19]

or its equivalent form involving r instead of T.

The energetic radiative yield is the integral SO

. 0 . (m/m, )? /‘ 5{_:(1?_32 (111.20]
A in the transparent 1limit. The function g(T), i.e., the Eﬁ
energetic radiation per pair of 1ions, is known for colli- —~
! sional radiative equilibrium, and it s assumed that the {:{
: dynamical changes are slow enough that changes in radiative k;f
power track them without appreciable delay. The wir? denom- éki
- inator comes from the assumption of uhiform density and :K‘
- temperature, and gives a resonance shape to the integrand, ’EJ
- which peaks near the time of peak compression. If the maxi- t
" mum temperature Tm is near the peak, Tpk' of g(T), then the :

integrand peaks when T reaches Tm and r reaches rm, the

minimum radius.

In the simplest approximation one evaluates the integral

using the resonance approximation,

¥ g(T )t ;ﬁ
: /i(zldt - — [1II.21] .
> m i,
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\ﬁ Wwhere the pulse width <1 1is found approximately by treating b
:ﬁ; r{t) as quadratic about peak compression; 3
a0 1 .. .. o172
‘ r Prp ¥ 3 Fpt? > 1t = (r‘m/r‘m), {111.22]
N so that -
5 ;
- 1 1 1 -
v — = - ——T7 (111.23] N
. "o e /FE. Tnl3Te) y
:3 Generally aTm>>b during most of the pinch phase. To the ex- +
= tent that r(T) follows the adiabatic law, one has rmaTm-1/C. .
:C leaving only a weak dependence of r/r; on Tm. This gives E
{. Y
b (m/m,)? _
< R ey TR ALY 10 39 [I11.24]
o nia r,T,
o in the adiabatic resonance-approximation 1limit. Recalling e
3 that a-2(1+z)/m1 and using 2>>1 and Z/mi = 1/2mp (with mp ¢
r
- the proton mass), one can write £
- v« (m/0)% am]27] €7 2g(r ) (111.25] -
- m m -
J :
\ To the extent that 1/C=-1/2 is small, this is clearly maxi- t
Wt mized (for given r,, T,) if the driving current and initial t
' conditions are such as to make the maximum temperature Tm A
i coincide with the peak of the energetic=-radiation curve s
) g(1T). -
i? Since in the adiabatic limit Tm 1is reached together with !
4\- - . .
ﬁﬁ rm when r=0, we have from the equation for Cr? an equation E
r'y for T : ‘
v m L-
1 L
i a(T =T,) = ben(T _/T,) = 3 Cr}, (I11.26] :
oy K
;u 'R
.(“. ::.
) 30 5
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A useful form of this for iteration is

C = b
Tm = T, + >3 r? + Py ln(Tm/Tl), [I11.27])
since the 4n term varies slowly. The Ff term represents

kinetic energy provided prior to t, (which may also depend
on a and b), and the n term represents conversion of mag-
netic field energy to thermal energy since time t,.

Prior to time t, the motion is not given by the same
differential equations, is generally not adiabatic, and
generally does not involve nearly-constant current. The
Kinetic energy acquired by time t, does, however, scale with
b (i.e., with I;) for any given pulse-shape of I(t) deliv-
ered to the load. Thus |if Tm>>T,. then Tm is approximately
proportional to b, i.e., to LI?*/m. So, while refinements
can and will be made to this, one has a rough rule of thumb

that for given r, and T,, the current Io required to drive

pt

Y'’?, where u=m/%, in the

T up to Tpk scales nearly as (quk

adiabatic limit; and Y’ scales roughly as u‘lm;’g(Tpk).

Both scalings are equally valid |if Iopt is replaced by Im
and Tpk by Tm' so that one has
> « [ -2 -2

Y Iim; g(Tm)Tm (I11.28]

(aside from &n terms), in ¢the adiabatic limit. With less
than optimal current, i.e., wWhere Tm is on the shoulder of
the g(T) curve so that g(T) is increasing roughly as a power
of T, one may even find a region where 3(Tm)T;1z = T; and so
experiments in this domain c¢ould fall along a curve Y> =
I1“%, even at constant m.

We will see later that the current required to reach a
given Tm is larger in the nonadiabatic case. This will be

only slightly offset by the fact that rm will be smaller,
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giving larger values of fg/r? once the desired Tm is reach-
ed. In the totally lossy case, the plasma cools as fast as
it can be <compressively heated, and temperatures on the
order of 'I‘pk cannot be reached. In that case Y> is general-
ly small. This can happen if the load is sufficiently
massive.

The evaluation and optimization of Y> can be refined

somewhat within the adiabatic limit. One can make a better
opt
m

To evaluate the integral, one first constructs T/T

approximation to fg(T)dt/r? and one need not argue that T

Tpk'
as a function of ¢=4n(T/T,), using the expressions for r(T)
and F(T). and then uses this to change the integration
variable from t to ¢. One then expands the singular

denominator of the new integrand about its branch point at
T-Tm, using ¢the method of fractional derivatives (rather
than simply expanding r? as r; + 172 Fmt’). Then, because
the g(T) curve is nearly parabolic in a log(g)-1o0g(T) plot,

one can use the model

Lng = 4n g - B(an(T/T_, )12 (111.291]

pk pk

(with fit parameter B) to do the resulting integral. Car-
rying out this procedure, we have

¢ A¢ - Be®
- Cna2 m e d¢
/S(T)dn-@ l_g e B¢pk/ (r11.30]
1

r ¢ Pk 0 /gl+b¢-aT,(e°—1)
with ¢ = 2n(T/T,), A = C~1! + ZB¢pk. €, = % Cr?, and
e, + b¢ - aT,(e® - 1) = 0 defining T (II1.31)

o Letting w-/¢m-¢ and expanding the radicand about w=0,
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v e, + be - aT,(e® - 1) ~ (aT_ - bIw?, [1II.32] R
3: the integral on the right becomes g
. /¢m(b) |
- P(b,¢p,) Q(w)dw [I11.33] -
o ° -
1 3
- with y
- 2 \
- 2 exp(a ¢, - B ¢2) 3
& P(b,e ) = /3T, exp(s.) - B [III.34] ;
U ;
¥ and .
<3 Q(w) = exp {-(A - 2Bo¢_)w? - Bw"}. [I11.35] .
- One can now optimize P/Qdw for given r, and T, by setting Y
its derivative with respect to b equal to zero; doing so
gives (after some algebra) i
(x + A)(x + a)(x - €) + (A - a)/4B = 0, [II11.36] 4
where g
H
X = zn(Tm/Tpk), {I111.37]
b= 8, *+ de,/db, {II1.38)] -
@ = 4yt E/b ¢ AT, /b -1, (I11.39] ‘
and '
e = (2C~! - 1)/4B. [III.40] 9
- When Tm is near Tpk as expected physically, x is small and R

the optimal value of x is .
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NaA - 1
= .4

xopt 4UBad - N(a + A) [r1r.41]
with

N Z2C7t -1, (1I1.42]
This gives the optimal value of bERI?%/mc?:

ank e* - aT,
bopt " Te,/b) + ¢ + X (111.43]
pk
with x = xopt’ Expanding this for small x, one has
A< NaA - 1

bope = (2T /a) [v + (55=) (ggar—=—wreery) ] [1II.44]

where the 1 dominates the bracket. In physical terms, if

one drops the small correction,

c? T

2 . (my 2(1+2) pk
12, =~ (P - - [III.45]
or
T (MA) = 0.3 x 10°[2 (&1 (kev)a=*]'2 [1I1.u6]
opt : £ ‘em’ " pk
with
A= €,/b + An(T , /T,) (III.47]

and ¢,/b is assumed independent of ©Db. The radiation inte-

gral with the optimal driving current can be evaluated using

-.‘T:? ®

" ' . =1
/ expl-(C¥-2Bx)w?-Bw*ldwz = o' "Ye¥ k. (y)y(2s)”1/Y
5 2 174

RE ° 1

M v = (3C7' - Bx)?/2B [III.48]
b -1/4 -1 .
b which is approximately 0.918 when C - 2Bx < 1/2. This

gives
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IR S

Tow, V72 AA 1/2
- . 2 -2 .
Yopt(J) 0.2u%2A~ (_T;) [—]

a(1+Z)CvVB
8 (W cm?) -1
e [r,(em)/T,(eV)] [III.49]
10

with uy the total mass per unit 1length (gm/cm) and Am the
atomic mass in AMU. We note here that a=A-1-3 and Am/(1+Z)
= 2, The initial radius at assembly, r,, is expected to be
of order 0.3 cm in typical experiments. The index N is
roughly 1/2.

Before refining these estimates for the adiabatic limit,
let us consider the magnitudes they 1imply. To do this, we
recall section A of this chapter, and model the t<t, cool
collapse phase as having (1+Z)T approximately proportional

to I%*(t) once a Bennett quasi-equilibrium is reached. The

plasma initially heats and expands until reaching such an
equilibrium, although the equilibrium may not always be
reached before time t,. This collapse~-phase model is espe-
cially appropriate for wire array implosions where a clear
Bennett-pinch quasi-equlibrium exists for each wire. Refer-
ring to this equilibrium temperature as T,(I), its near-
constancy for constant I gives wus T,=T, in the constant-
current case, Physically, the near-absence of heating in
this phase reflects the fact that although the plasma is
accelerated inward by the field, there is nothing except
magnetic field for it to push against to compress and heat,
as long as the acceleration timescales are long compared
with the sound transit time across the plasma(s) (i.e., as

long as there is no shock heating).
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For wire array implosions, to the extent that the cur-

rent IMA in the pinch phase 1is related to the typical cur-
rent Iw in the WIRES phase, and to the extent that the annu-
lar BRIDGE phase does not strongly heat or ¢ool the plasma,
one can relate r, and T, at the beginning of the pinch phase

to the driving terms in the WIRES phase. Over the limited

l
3
3
x

range of total wire currents Iw for which pressure-balance

Bennett equilibrium is achieved 1in the WIRES phase one has

for aluminum 6-wire arrays

o [1+2(T,)]T,(keV)=2.25 x 107%12/u(g/cm) [III.50]

tii with I in MA, from Equation [III.2]. Over the even-more-
limited range of Iw for which blackbody cooling balances

& Ohmic heating one has

{111.51]

1/ 1176
3 ]

r,,(em)-1.5 x 10° 1,72 {(1+2(T; )}

for a 6-wire aluminum array merging at radius | S (Again
W

Iw is in MA, and the formula probably does not apply much

above I;/u=10“.) The BRIDGE phase further compresses this

P SALSPRIRTRPLISY Ty W

outer radius by a factor of order 0.6 before it assembles

into the pinch phase.

The ratio of maximum ¢to initial temperatures in the

pinch phase, Tn/T" based on the quasi-adiabatic approxima-

] l tion, is shown versus the normalized quantity
?- K, = SCh [ 2]
b o * EaT, III.5

in Figure III.3, for various values of Izb/aT,. For alumi-

F{; num,

o X
P D o= 107°(13,7u)/T,(keV). (1rr.s3] o
o g
I .
b -]
b L
L

%;r 36
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Ratio of peak temperature to initial pinch temperature, as a
function of initial kinetic energy (scaled to thermal), for

various normalized currents, in the
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Figure III.3.
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For any given generator voltage pulse shape one expects both
5} and T, to be roughly proportional ¢to b or I1?/u, so that
neither K, nor I should vary greatly as I2?/u is changed.
What variation there is should come about because of changeé
in the wire merge <conditions and duration of the annular
phase. Ko is ratio of kinetic to thermal energy content at
the beginning of the pinch phase, while T is a ratioc of

magnetic to thermal energy at that time.

2. Singular-Perturbation Expansion for Nonadiabatic Trajec~

tories

The energetic radiation output (Equation III.20) for the
nonadiabatic problem can be calculated by expanding g(T) and
r(t) about the peak compression, r-rm, which we take for
convenience to occur at t=0. We keep in mind the useful
case where the nonadiabatic trajectory given by

r = (aT - b)/r

. . (III.54]
T = T(-Cr/r - 1),

i{s near the adiabatic one given by the special case f=0; in
the (&inr, 4nT) plane the trace of the adiabatic trajectory
is up and back along the line segment &n(T/T,)=-C&n(r/r,).
The nonadiabatic one is a 1loop, as shown in Figure III.U4,
except at late times (when it may re-compress).

Equations [III.54] give first integrals.

t
T/T, = (r/r,)'cexp [-—J{ f{r(t).t}dt] (I11.55]
t

1

and

t
C5’-C5}-23(T-T,)+2b£n(T/T,)-%/ﬂ (aT-b)fdt. [II1.56]
tl
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Figure III.4. n T versus in r trajectory loop, compared with adiabatic
trajectory, both calculated for a constant voltage driver
using the RUNIN code.
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These can be written as

T/T, = (r7r,) C{1-¢,(T, T,, a, b, C, m)}  [III.57]

and
fe (F - e,) 72, [(111.58)
where
t
€, = f £ dt {111.59)
tl
and
-1 t
€, = C Jr (aT - b)f dt [II1.60]
tl

and F is the function r? for the adiabatic case,
F =r? - (2a/C)(T-T,) + (2b/¢) &n(T/T,). [III.61]
The radical in (III.58] cannot be expanded directly for

small €, because F=0 at peak compression in the adiabatic
case., We will return to these formulas when computing the

values of r and T at peak compression.
For the radiative yield we expand the numerator and
denominator of

j’g{x(t)}dt
rz(t) )
about the time t=0 when r has its minimum value rm:
. 1 a2 1 . s
r(t) Pm * 3 rot® * g Pt [II1.62]

'o 1 "- ’,, ' .
g{x(t)} = 8, * B Xt ¢ E(gmx; xmgm)t2 ee.[II1.63]

m

where we have used x £ n(T/T_..). The subscript m indicates

pk
evaluation of a quantity at time O when rero. (In the non-

adiabatic case T has largely reached its maximum and {s

40
. . e el . e w e .
T e L e e e TR A
RTINS NOACY DT -
el e ._-.'-:.'5-.'4_"-_-.';_ RO A BN .
RIS ARSI RS NI PN

'f)',!' ‘r""\"'.“'." ‘."' - .'.'. -.'.".'."".".‘-.‘.\..":.'.-.‘.'. ."‘.'.'
D P D R PP v O D T Wl I < SO S I >V

P
3
N
3




:

"

"

X

decreasing by the time r reaches its minimum value rm.) &
Figure III1.5 shows the shape 1/r2(t) for the adiabatic and

nonadiabatic (dashed) cases. The t* term in r(t) is due y

entirely to the radiative energy loss.

Using the nonadiabatic Equations [III.54] we can evalu- -

ate the time derivatives at t=0 (r=0): -

P " (aTm-b)/rm [III.64] ;

e = ol - - ’ . .

r a‘rm/rm af(rm.Tm)Tm/rm aG(xm)/(nlrm) [III.65] ;

3 ] - - . - 2 . “

X0 Tm/Tm f(rm.Tm) G(xm)/(uzrme) [III.66] 2

e - . - L z - - - -2
X Tm/Tm (Tm/Tm) C(aTm b)r‘m

-G'(xm)im(wlr;Tm)“ - x [111.67]

2
m

(fT)| ], where we have used the
m

aja
ct

[since T, = -C(r‘m/rm)'rm ~

fact that Tm should be hot enough that most of the radiation

energy loss at peak compression is through the transparent

Ry Tt v -

hot component described by power g(x)/(wir?):
- 2
Tmf(rm,Tm) G(xm)/(nzrm)

(111.68]

v e ® o » e -y,

with G(x ) = (m/m,)g(x )/Z,

»

< WYY,

Thus the term Géimt in Equation [III.63] is of order GG' -~
~n2o2 ".2 3 v
“mxm' the Gmxm term i{s of order G®, and the mem is of order
t -~ ]
G Gmxm' r
With these expansions of g(t) and r(t), the integral
f{g/r?)dt has the form

L1 S
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& This is done by (a) expanding the denominator since ¢, is
small, f‘
Q (A+Bt2-Ct?)~2a(A+Bt?) %+2Ct > (A+Bt2?) "*+0(C2t*), o
N (b) approximating the integration limits by =« to +=, (c) E}
ignoring odd functions of t in the integrand since they ;{
5 e
- integrate to zero, and (d) using the formulas ﬁﬂ
: * at 1/2 ]
L /.. Kvoser T TR T
t
* dt 172
n - ‘3]
- /-- zA + Bt!5! - ﬁ (AB) ’ ‘
dt 3 -1/2 e
) f__ v BT - T (AR ]
¥ Y
. and E}.
" o
; m m-2 m-2 .
/ t"dt ) 1_/‘ t" “dt _ A t" “dt s
9 (A +Ben)P BJ (a e Ben)PTT B J (a s Be)P N
n N
| The result is i
" :ﬂ-'
(1/2) (A,B,) " "72((A,/h,)-(C,/B,)-(3B,C,72B2)} [III.70] 3
.'::' or
T- - G2g:
) 2 . n/v/2 g a/(me)? m°m e
g: .f(g/r Jdt rm(aTm-b)"’ [gm e (aT _-b)? P -
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Qxf Modeling g by 8pk exp(-Bx?) as before and neglecting b com-
- pared with aT_, one has
::i. - - 2
R x/v3 e B¥ 8,
2 - -
- f (grrtyae N ETATE [ (1 - 2cBx) +
‘-:‘:
2o pkexp( 2Bx?)
L - - 2
\_‘:. arz-r (1!’9.): (1 X qu ) [III072]
-, mm
- evaluated at x = z An(T /Tpk)
%é: The values of rm and Tm are not the same as in the adia-
?5 batic case (both are smaller). Subracting the first inte-
{i grals of the adiabatic motion equations from those of the
Tt nonadiabatic case gives
S
3 Ax + ca(&nr) = - [ £(r,T)dt [III.73]
-\
.n'.' '
ax - 2 1 a(e*) = b-' f(aT-b)f(r,T)dt [III.74]
S b "pk
;ﬁi where A indicates the <c¢hange from the adiabatic case with
ﬂﬁi the same b value. Evaluating these at rm (t=0, x-xm) and
j replacing the lower integration 1limit by ==, we can use
j:: techniques similar to (a)-(d) above, to find (after some
-
N algebra):
o 0
o 1 1+C+2CBXm 1 Gm
€, = £(r,T)dt « —— (— ) =z
- 2v/24 m r vaT m
“‘-_"_- -® m m
>
ﬁ;' 1 (1+C+2CBXm) Y>
ety - = ~— [III.75
227 Z TTT+CBX) ta/m )Z,T, ° ]
0
1 a Gm :
Ce, = (aT-b)f dt = — — == i
2/2% r _vaT m A
- m m !

._ R

M P S 8 . "roatv o~
’. U.*’ 4’ ﬂ:.:q..‘- P .

3 '-,—_.-.r-
LD o




3

Ly
A s 8 &

5

148

(S i e
AR

g 4

D

1 1 Y
= aTm(T:EEY;)'E ) (I1I1.76]

to first order in G.
Since m/m, 1is the total number of jons and Z, ;3/2(1+Z),
the ratio '
>

Y .
—_— (I11.77]
(m/mi)Z,Tm

is just the radiative energy 1loss during the pinch phase as
a fraction of the peak thermal energy of the load. Then
Equations [III.75] and [III.76] can be used in [III.73] and
(III.74] to find

(1 + C + ZCBXm)

AX = Y
(1 + CBXm) 2
to first order in Y,
i.e.,
Ta(b) =~ T 4(b) exp[-(r/z)(1+c+caxm)/(1-csxm)] (II1.79]
and
rm(b) = rmad(b) (111.80]
to first order in Y. (Tmad is the maximum T predicted in
the adiabatic case, and rmad is the minimum radius i{n the

adiabatic case.) To first order in Y then, the deviation
from the adiabatic trajectory due to radiative energy loss
reduces the temperature at maximum compression, for any
given b=I12%/uc?, but does not appreciably change the minimum
radius of the pinch. (The radius change is second order in
Y.)
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Subject to the limitations of the uniform-plasma model i
(etc.), the RUNIN code allows assessment of these results, :E
whereas the analytic scaling 1laws for the quasi-adiabatic 5;
radiator do not apply when the radiative loss proceeds as =
fast as thermal gain. Because of this, the RUNIN code will ;%
shortly be used for 1investigating the branching ratio, ;;
Prad/[d(nT)/dt]’ as a function of n;, T, and the total input Z;
power -d/dt f?/ZpV’d’r, and for scoping optimal conditions 'j
at high currents. Related analytic work will be carried on zg
in that conjunction, to obtain approximate scaling laws for ji
the efficient-radiator case as well. &f
D. CAVEATS —
Results such as these derived from simplified approxi-
mate models, deserve caution in their application to real e
laboratory systems, We 1list here the major assumptions in

the foregoing scaling 1laws and cautions appropriate to
them.

1. Uniform Plasma

If only a fraction of the total plasma volume radiates
at the indicated temperature, not only must the energetic
radiation estimates be reduced proportionally, but the non-
adiabatic corrections must be generalized due to the addi-
tional lower-temperature radiation from the cooler plasma
fraction.
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2. Inefficient Coupling of Kinetic Energy to Radiation

First-order corrections to a quasi-adiabatic pinch are
appropriate only if the energy losses due to radiation are
not extremely large. The total low-energy radiative loss
from a cool ohmically heated discharge can exceed the ther-
mal energy content of ¢the plasma at any one time, and in
fact that is an efficient way to design long-pulse low-ener-
gy-radiation sources; but it is clearly not describable by
the formalism used here to estimate radiation from a some-

what damped pinch bounce.
3. Energetic Radiation Dominates Losses in the Pinch Phase

The use of the approximation i = §> in formulas is not a
necessity, but is done for simplicity and is appropriate
for a uniformly hot plasma near the peak of the radiative
loss function. Formulas [III.78] must be 1interpreted
cautiously wheh applying to typical laboratory cases where
the energetic radiation during the pinch phase may be a

smaller fraction of the total radiative loss.

4. Constant Current

Although one can model non-constant currents through
suitable choice of driver functions b(t) (replacing the
constant b in the analysis), we have not done so in this
presentation. As one can see from RUNIN code runs, the
assumption I=const. {s only very approximately satisfied
during the pinch phase.
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5. Dependence of Pinch Results on Initial Conditions

The wires and annular phases of the implosion determine
the initial conditions for the pinch phase, and inasmuch as
they depend on the generator current {(assuming fixed.current
versus time profiles with variable amplitude), the ‘optimiza-
tions for pinch radiation done at fixed initial state are

not applicable for the total problem.
6. Ohmic Heating

While ohmic heating is negligible for strong implosions
of low-mass loads, high-mass 1loads accelerate more slowly
and may have much lower PdV heating rates. The smallness of
the ohmic heating is also dependent on the assumption of
fairly complete current penetration during the wires or

annular phases; if the current is confined to a very thin

sheath, ohmic¢ heating power increases: PQ = 218 /nJd*r dr =
2w212/aAcurr with conductivity o(T) and current-carrying
area Acurr'.
@Q: These cautions are pointed out as reservations which
L':'."

could be major in some implosions and some parameter ranges,
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but which are probably not 80 major in typical present-gen-
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eration experiments. An attempt has been made to make sim-

&zs plifications to provide transparent calculations, without
N throwing out the more important physics affecting the scal-
E;} ing. We have also provided a quantitative evaluatjion of one
FgL impértant deviation from the idealized formulas (namely that
ﬂf' due to radiative cooling). Other deviations, particularly
:ﬁ; at the higher load masses implied for very-high-current
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experiments are less easy to quantify; for example some of

the opacity and radiation blanketing effects do not appear

to be representable by simple algebraic formulas, thus ne-

cessitating (so far) case-by-case code calculations.

E. COMPARISON OF REQUIREMENTS FOR GENERATORS DRIVING RADIA-
TION SOURCES AND FUSION TARGETS

Inelastic processes leading to nuclear fusion are
strongly exothermic, whereas those leading to radiation are
endothermic. Because of this difference, the nonadiabatic
trajectories in lnr-1nT space for radiation and fusion tar-
gets curve away oppositely from the adiabatic trajectories.
More important a fusion spark, i.e., a central region with
enhanced temperature, tends to -expand and propagate the
fusion burn whereas central radiating spark (enhanced densi-
ty, or temperature within 1limits) tends to radiatively cool
and allow further compression, leading to a radjative pulse
of increasing intensity, but decreasing energy per photon,
and a non-propagating radiative burn because of the high
photon transparency at low masses. {Thus quasi-adiabatic
calculations tend to be overly pessimistic for fusion
sources but overly optimistic for K-line radiation sources.
The applicability of wuniform-plasma approximations is poor
for fusion burn, better but still questionable for radia-
tion production.)

Another very important difference is that the critical
temperature required for fusion reactions to proceed appre-
ciably is much higher than that for the production of ener-
getic radiation in a plasma of intermediate z, e.g., argon

or aluminum; and the c¢ritical fusion temperature is an ion

JdL

ale ko e Y
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temperature whereas the radiation requires only sufficiently
hot electrons which are generally easier to obtain. Sub-
tracting D-T Bremsstrahlung energy loss from D-T fusion
energy gain, the g(T)-equivalent energy production curve for
a fusion neutron source has a broad maximum at 20-30 keV ion
temperature, while aluminum K-line radiation peaks at 1 keV
and argon at 2.4 keV, For present or near-term energy
sources availabie to dbive laboratory-scale implosions, this
makes radiation sources much easier to achieve than fusion.

Hydrodynamic timescales in a fusion pellet are also
faster than in a radiatjion source plasma because of the
lower atomic weight of the fuel. This may result in power
delivery requirements for fusion targets which are higher
not only because of the need to achieve much higher tempera-~-
tures but also because of the need to deliver the energy
more abruptly to avoid pre-heating and/or ablating the fuel
during the run-in phase of the liner or pellet.

In both fusion and radiation targets, pre-heat of the
central region during the run-in phase is to be avoided
because it reduces the peak achievable n?; i.e., the greater
the central pressure just before collapse of the liner/arnu-
lus/pellet, the softer the compression. Since blackbody
radiation from the imploding plasma annulus can be a major
contributor of central plasma preheat it {is a truism that
the annulus or shell should ©be Kkept as ¢cool as possible
during the run-in phase. But in fact one has rather little
control of the ohmic heating of the shell or annulus except
to deliver most of the driving power near the end of the
run-in. In laser-driven implosions this is achieved by

pulse tailoring; in electro-magnetically driven implosions
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it is moré difficult because (1) the effective driver coupl-
ing is reduced once the implosion velocity is high (the
effective electric field driving J for the JxB force is
E+VxB/c, and although E increases, V and B tend to increase
faster and cancel the E) and (2) voltage pulse tailoring on
10 ns timescales is technologically more difficult.
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CHAPTER IV

SIMPLIFIED NON-LINEAR FIELD DIFFUSION

Electric or magnetic field diffusion into an initially
unmagnetized plasma slab was modeled for a fixed plasma with

temperature-dependent conductivity (e.g., « T3/2) and with
ohmic heating balanced by radiative heat 1loss of the form
RnBTa (R,a,8 constants). Except if a = 3/2, the temperature

is then given by JE = RnBTu. The diffusion equation for the

electric field E then takes the form

g - n P9 - o,

where p and q are related to a and 8. This equation was
solved for model n(r) profiles.

A. PROBLEM DEFINITION AND APPROXIMATIONS

The diffusion of magnetic field into a plasma is affect~-
ed if the accompanying electric fields alter the plasma
conductivity. Since ohmic heating raises the plasma temper-
ature, the sélf-consistent field profile and the field pene-
tration history can be quite different from the ususal dif-
fusion model, but can be <calculated if a suitable equation
for Te is availablef

In general, two effects complicate the physics of the
field penetration: fluid motion, {.e., momentum exchange
with the field; and thermal conductivity, which makes the
temperature equation a partjial differential equation as well
as the field equation.
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But in certain limitiné cases, including large ion mass,
the plasma motion, including v x B back-EMF effects, can be
ignored. And if thermal conductivity is sufficiently small
so that inelastic excitation <collisions dominate the heat
loss, we get a local ordinary differential equation or alge-
braic¢c equation for Te, coupled to the partial differential
equation for the field.

In a very simple' case with fixed ions, quasineutral
plasma, and negligible thermal conductivity, one may assume
a quasistatic heat balance between ohmic heating and excita-
tion cooling (the excitation energy is assumed radiated away
in optically thin radiation):

3 (n,T

3 3T (Tt nere) = JTE - n_e vx(Té. no) [Ivfjl

X

where J = o(ne, Te)E is the induced current density with
conductivity o (not necessarily scalar), €4 is the excita-
tion energy per ion (or atom), Vyr the excitation rate,
which depends on the number density no of ions or atoms than
can be excited. If ionization is allowed as well as excita-

tion, one has

(niTi+neTe+neTe)-JfE-neeva(Te,no)-neeivi(Te,no) (1v.2]

[\V]]V¥)

If the diffusion timescale is slow compared with the
ionization and excitation times one <can think of ng as de-
termined by Te' i.e., when

n1 = Q,
n_ = 323 ie'
e 3Te
3 . 3 in ne
Tt (neTe) - neTe(1 + Tl—nTe ) [IVf3]
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with the logarithmic derivative term a function of Te' We

take Ti = Te = T,

For o(ne, Te) we have o = (e?/m) (ne/vm) F(wc/vm), with

-3/2 o172
m e c e * nnKnTe ’ (1v.4]

w, = eB/mc, Ké and Ké constants, and F approaching unity for

small wc/vm. The last term of Vm applies if neutrals are

present. For the fully ionized plasma, ¢ has the form

¢ = K T3/2 372

eTe ) {iv.s5]

- o -
F(mc/neKcTe

on the other hand, if neutral collisions dominate Vo then ¢

has the form ¢ = KnneT;1/2. To allow either case we let
a-anTg, and assume neaTeeni(x) with some power ¢, but

restrict the magnetic field to values small enough that
w,/vp < 1/4 so that F = 1 and the conductivity is ap-

are

proximately scalar.
: With the approximation that o¢E? and cooling KxnfT:
3 nearly in balance, we can treat situations where nefe << gE?

and Kxnfrg. Then, except if a = §, we have

1

3 T (X,t) = ((5&) aY"Bg2)*"%  and

. e Kx i

i K -2 - +1

> J = K(z=)3"% n Pgd [IV.6]
e

- X

]

. 23 _ v-8

[ where g 5=3 and -p Y + § a=s"

é (A similar result {with different powers p and q} was also

? obtained for the "anomalously resistive" case where J/nee is

i limited by the sound speed). So when ne/ni varies roughly

as TE we have
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X ;
-.. W
::': . . . + - . J
2 J = gF + QE = ((:Tg) K (g—)q/z) n PEYE. [IV.T] ?
- This leads to a PDE of the form '
R
i E% - ¢ nPx) 2 ZE, (Iv.8] h
5% . R
:@\ (the dot indicates 3/3t), to which we apply boundary condi- E
- tions E(-=) = E_ and E(+=) = 0, and initial conditions .
Wl r
E, for x < x; <0 -
(Iv.9] .
:‘, EO(X) = 2 2 . r
o Ejexp-(x - x,)7/487) for x > x, P
L
1= .. ;i
o choosing x, close enough to where n(x) = 0 so that the E ’
AN wave term is still negligible compared with the ¢E and/or Eg E
Y -
> terms. A 1D slab model was used and ni(x) was given time- g
o dependent function of x, In the wave-diffusion equation, Vx ;
< I .o : . . .o 3
::: Vx E + E /¢ = -(4n/c?) (oE + Eg), the E wave term was N
< {4
Q:{ dropped. We assumed one of two forms for ni(x); a step f
- . N
. - function n, = n, H(x), or a Guassian, n, = n exp(-x2/h?). \
i io i io -
) f
oo B. NUMERICAL SOLUTION
Sy B
{i The resulting nonlinear diffusion equation for these .

simple approximate cases was solved wusing a 1D finite-dif-

if ference computer c¢ode, fully flux-conserving, employing a ?
7 A’J I.-
ﬁ? fully implicit method with tridiagonal matrix inversion. ;
Pi' The code was run for a time equal to four initial magnetic f
Ry .2

#!r diffusion times for the Gaussian plasma, on a fifty-point v
;3; uniform spatial grid. Because the wave term was not kept, .
5
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the solutions are not quanﬁitatively correct far from the
plasma. The Courant stablility c¢ondition, At < Ax2?/D, was
not satisfied at the foot of the pulse when D(E) had a pole
at E = 0, but the model equations are not strictly valid in
that limit because the conductivity and temperature do not
actually go to zero when E goes to zero at the diffusion
front. On the timescales of interest, this failure to sat-
isfy the Courant condition at the front did not make impor-
tant changes in the overall field diffusion history.

C. INTERPRETATION OF SOLUTIONS

The solutions for an ionizing Argon plasma with Coulomb
collisions and excitation of ion lines (B=2, Y=0, §=3/2) are
compared with the solutions of the standard textbook case, o
= 0, in Figure IV.1 and 1IV.2. Where ni is not small, the
buildup of plasma conductivity (for a > 3/2) tends to short
out the field penetration and steepen the gradient of E. In
the absence of other effects, we would interpret this as
evidence that (1) the bulk field diffusion in such a plasma
is slower than the rate indicated by the magnetic diffusion
time unoonz/cz but (2) the diffusion of the "foot" of the
field profile is much faster than for the constant-g case
because the conductivity and temperature are low near the
foot.

For a less than about 3 in the radiation/excitation Ta
dependence, the nonlinearity of the diffusion, Eq. with q =
3/(a=3/2), can be quite strong and sensitive to a; for Argon

20,p"3 and Te = 50-150 eV, q was 0.91 and the

at ni T 10" "em
nonlinearity was moderate.

Lt e
\'\h'.‘_n' '('
% Dy IS e w L




Sl atnadande i Ja

-'1‘*'.‘-5-5
v

(s

NONLINEAR FIELD DIFFUSION IN ARGON ;
2 (50—150 eV, 10°—10%%/cm® PEAK) Y

‘f_'

3 ]
3 E
3 — :
» | / \\ i
\ / \n(x)

W =

] AN

' A ‘,’f- N Cor
.‘".,‘.\ - -".‘ ‘_'__.A'.
el

t’;-

O

7

i AR AN

oy
L

o X

s Figure IV.1

L
.r:' :
}:‘.y. 5 7 Fc
-.' - :
A
8,




Pl Sk e Nt i g

MG AR Pk b gng a0 A2

LA AR A0 a-i A ol ok ath af

a2 a2 g

CAA L

U

§ e . e L S e ' A . el
%Al A PP R P IS F il WP | PLELPArLIIAIY SN AENERTRE AR T i R 2 U BS S e I P4
e

o
-
X

x.-.'\
" L
.-

-
.

vmaean
ALY
.

“~

-
ks
\
)
r
\NONL

-
-

S

-

-:‘u_:{~
RS

r.»

.»Il‘

independent diffusion coefficient) intn the Gaussian density
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Normal diffusion (i.e., with density-independent, field-
profile of Figure IV.1.

Figure IV.2.
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This field model calculation was also applied to a weak-
ly ionized region in a uniform neutral medium, with elec~-
tron-neutral collisions dominating (v=1, = =~1/2, <ov>¢T1/2)
and with excitation of neutrals (8 = 1), Here p = =1 and q
= =-1/(a + 1/2). Again the diffusion was compared with the o
= 0 case. Here 1increasing Te reduces the conductivity and
enhances the diffusion rate 1instead of impeding diffusion,
but the nonlinearity is weaker.

At higher temperatures, when a is not much larger than
§, 1.e., when the temperature-~dependence of the excitation
cooling is not much different from that of the conductivity,

excitation fails to clamp ¢the electron temperature at a
well-defined value, and the fe term in

. - 2 8 Q
n T, G(Te)(oE KxneTe) (1v.10]

is not necessarily small compared with the right-hand source
and sink terms. The equation in this case may fail to spec~-
ify a temperature algebraically, especially when g « ng as
well. and it must be integrated in time simultaneously with
the E field equation.

With the more advanced MHD code discussed in Part II of
this report, we are also exploring other effects, including
those of self-consistent magnetization in the conductivity,
thermal conduction, fluid motion, etc., which allow a broad-

er range of penetration phenomena for the electric field.
D. CAVEATS TO THE FOREGOING NONLINEAR DIFFUSION STUDY
To assess the 1importance of ohmic heating and plasma

blowoff, and to predict the dynamics of the assembled pinch
plasma if ohmic heating is important, it is necessary to

Ay <y

s et
PV YO

[ R R
s 4

=t v
PR IR

Y »




LA

.
.
.
t.
.
4
[

L . AL e DB o
PR

have some knowledge of the field penetration depth into the
plasma. The process s clearly affected by nonlinear fea-
tures as just described, but also by other features not
included. Perhaps the most important of these is magnetiza-
tion of the conductivity, which ralses the effective resis-
tivity just behind ¢the field penetration front and hence
favors current flow on the front where the field is still
low. This probably tends to enhance the effective diffu-~
sion rate of field.

Second, preliminary results from the 1D code described
in Part II of this report show that the plasma motion, not
fully considered here, is important not only in reducing the
effective electric field by v X B (which is easily included
in this model, taken in the plasma moving frame) but also in
causing compression (nonuniform motion) of the plasma.
Finally, thermoelectric fields are set up, as shown by the
1D code and these tend to make a plasma which is overdriven
(where E is large) transmit ¢the force and cause generator
action in {ts interior, setting up magnetic fields due to
the resulting axial current filament. This may explain a
feature commonly observed in the plasma focus, namely pitt=-
ing of the cathode on the axis (presumably by an ion current
filament); but such thermoelectric effects cannot be includ-
ed in the simple model explored 1n this section.

In addition to these <c¢aveats there are the mathematical
limitations of the model. Temperature is increased by ohmic
neating but does not vanish at the field front where ohmic
heating vanishes. The radiation, at interesting tempera-~
tures, often does not have a simple power-law fit,

The model above may be wuseful as a step in describding

field penetration in massive higher-Z structures associated
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CHAPTER V

SUMMARY OF PART I

This half of the report describes a simple "scoping"
code for describing imploding plasma radiators, scaling laws
for energetic radiation from imploded plasmas, and an effort
to model the nonlinear field penetration in the early stages

of plasma implosion, as the plasma heats.
RUNIN CODE SUMMARY

Runs WIRES (optional), then BRIDGE (annular plasma),
then SQUEEZE (pinch phase).

A. WIRES

1. Evolves position, size, temperature and current for N
identical wire plasmas.

2. Pre~BBE: wWwires fatten at sound speed.

BBBE: blackbody (BB) radiative cooling balances ohmic
heating, and with Bennet equilibrium (BE), determines
size and temperature of individual wire plasmas.

3. MWire centers move inward via F = ma, F determined by
current I/N in each wire (N wires, total current I) and
radius of centers Poe Current I comes from given volt-
age V(t) via circuit equation including generator imped-
ances.

4., Merge Condition: When wire plasmas touch.

Merge: Replaces wires by annular shell of same mass,
volume, temperature, RMS position and inward velocity.
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BRIDGE

Evolves outer and inner radii, temperature and current
of a uniform annular plasma shell driven by V(t) via
circuit equation. Uses variable-timestep ODE solver
DGEAR to advanceAthe variables.

In force equation, current is. treated as if acting at
outer surface.

Inner radius évolved approximately by moving away from
outer surface at a speed related to the sound speed (as
one possible model).

Quasi-transparent rédiative cooling (limited by black-
body rate), and ohmic and compressional heating, not
necessarily in balance.

Keeps log of integrated radiated energy loss and ener-
getic photon loss.

Closure conditionﬁ inner radius < 10-6 cm.

Closure: set inner radius to zeéo and éo to SQUEEZE,
passing it the outer raduis, velocity, temperature,

current, etc.
SQUEEZE

Evolves compression of uniform plasma c¢ylinder driven by
voltage V(t) and circuit -equation, including quasi-
transparent radiative loss. (Uses DGEAR.)

Self-similar motion, driveh by force at Surface.
Temperature equation includes compressional, decelera-
tibn and ohmic¢c heating, and quasi-transparent radiative
cooling (limited by blackbody rate). As elsewhere,
ionization state is controlled instahtaneously by tem-

perature.

63
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4, Continues log of integrated radiative energy loss (YT )

and energetic photon loss (Y>).

RADIATIVE SCALING LAWS SUMMARY

Assumptions:

1. Almost all the interesting radiation occurs during the
pinch phase,

2. The plasma is uniform (including isothermal).

3. Interesting radiation is transparent and instantaneous.

Power P = mr? n*g(T), where n = ion number density,

T = eleg:gon and ion temperature, and g(T) is a known
function (e.g., from thHe NRL model).

4, Perturb about adiabatic (nonradiative) compression.

5. Initial pinch conditions depend on history of the annu-~
lz - plasma and wire plasma stages.

6. Current I is wused (in lieu of voltage) as a scaling

variable, since the compressional forces depend on I2,

Fundamental Formula:

m/m
> t 2 2 i .g(T(t))dt
Y fon (t)g(T(t)) mar (t)dt = f 2100
since n = (m/mi)/(nrzl). Here Y  is the time-integrated

energetic-photon yield, ¢ is the pinch column length, r(t)
i{s the outer radius of the pinch cylinder, T(t) is the tem-
perature, g(t) is the known radiation function, n(t) is the
ion number density, m is the total 1load mass and m, is the

i
mass of one ion,
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- Fundamental Approach: 5

‘\5 1. Radius r(t) and temperature T(t) are given to first :
‘?3 approximation by adiabatic compression., (Perturb about a
53 this.,) Compression is driven by b = 2I2%/m, assumed j
[i nearly constant during the pinch phase. .
';i 2. Find conditions maximizing Y> and show how they scale E
- with 2I2/m and initial conditions of the pinch, to low-~ :

est order (quasi-adiabatically).
3. Extend to next order in non-adiabaticity.

S Primary Results: g
ﬁi; 1. There is an optimum value of &I%*/m for any atomic ele-
t%- ment: .
| - m.g -1q1/2 :
F Iopy (MA) = 300 [2.(cm) T, (kev)a ] [(III.46] x
- q
- where A-e,/b+1n(Tpk/T,) depends on initial conditions, i
;:' and Tpk is the maximum of the given g(T) curve for the y
" element. €, is the kinetic energy at the beginning of g
Y
_{. the pinch stage, and is roughly proportional to bZ2I?/m.
fﬂ? 2. If 2I%/m is chosen to have its optimal value, Y> can be R
}i' expressed as a function of either uzm/% or I. Doing the f
SOl N K
TR former, X
)_ ;
s > . 2 N/2 — "1 -
S Yopt(J) 0.2y Q(Tpk/T1) [r1(cm)/T1(ev)] -
,':;:-_:; 42 ) 3 -2
o (10 gpk(d cm )]Am K (III.49] 5
o | -
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where Am is the atomic mass number (a.m.u.), K is a
dimensionless number of order unity (see text) and N is

a constant or order 1/2, related to the adiabatic index.

(If T/T, = (r/r)°C, then N = 2¢”" = 1.) .
3. If one chooses to express Y>opt in terms of I rather ;j
than u, one finds YZpt « IY, to zeroth order in the ;E
radiative loss. This agrees with observations and -

simpler scaling modelss.

.ﬂ:’-'p"_.

u. In the next-order approximation, where radiative energy

bS] l‘: “

P

loss is a non-negligible perturbation of adiabatic be~

¥
A

havior, Y:pt falls below pu? or I* scaling. The ratio of
>
Y to the peak thermal energy content of the load is a

XA

natural scaling variable if the pinch phase {is hot

enough for energetic photons to dominate the radiative
loss rate, Let this ratio be <called Y. Then to first

order in Y, the minimum radius (peak compression) of the
pinch i{s unaltered, but the peak temperature is lowered
by a factor '

exp ~(Y/2)F [111.79)]

where F depends on the adiabatic index C and on the peak
temperature., A higher current is thus needed to reach
the optimal radiating temperature than in the quasi-
adiabatiec limit, and this translates to a scaling slower

than u? or I* at large I or yu.

NONLINEAR DIFFUSION SUMMARY

For a noncompressing plasma Iin radiation equilibrium

(i.e., where ohmic heating s ©balanced by radiative cool-

ing), we examined <classical field penetration, affected by

.
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the changing conductivity of the blasma as it is heated by
the penetrating field. This diffusion, in a medium where
the diffusion coefficient depends on the field, shows quan-
titative differences from the usual constant conductivity
field diffusion problem,. The differences depend of course
on how the conductivity changes with field, and this in turn Y
depends on the radiative properties. Field diffusion in
Argon with a Gaussian density profile peaking at 10!'? =~
102%°cm~? and with temperatures 50 - 150 eV was modeled with
a 1D nonlinear diffusion code. Although conductivity build-
up in the plasma somewhat steepened the diffusion front, the i
foot of the field profile moved more rapidly than for the
constant ¢ case because the conductivity and temperature are
low near the foot. This study may have some applicability
to the early~-time field penetration in gas-puff plasmas, and
to the location, thickness, and freezing-in of the current
layer, although in the real situation plasma compression

(not modeled here) is probably equally important. ?
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PART II

e

CHAPTER I

OVERVIEW OF THE ELECTRODIFFUSIVE MHD MODEL FOR THE
IMPLODING PLASMA RADIATOR

P

>

Present efforts in the modeling of imploding plasma

% T T

radiators are centered on the 3study of electrodiffusive,
radiatively coupled MHD theory as the basic tool needed to >
understand the role played by each of the plasma properties 5
in shaping the 1implosion trajectory, emission profile, and N
radiation pulse observed in the 1laboratory. The primary .
points of interest in the plasma behavior are two-tempera- 3
ture effects during compression, c¢hemical potential and <
ionization profiles, thermoelectric effects on axis at as- ‘
sembly, and the modes of current penetration. The main b2
points of interest in the {nteraction betweeﬁ the plasma
load and the diode are the validity of the diffusion approx- }

imation, the structure of the plasma-to-vacuum transition, 2

Py 1

the fraction of power absorbed by the load relative to that

s TN

reflected, and the resolution in spacetime of various

sources of reflected power. Of equal interest is the devel-

T Yy

opment appropriate computational techniques and software

LA

T’

with which, first, to answer these qQquestions and, then, to

[
v

admit a smooth extension onto a much wider application do-
main. In order to obtain this kind of capability it is
neceésary (1) to select carefully the minimal set of fields
to propagate, (ii) to optimize the time integrations with

- v
ey /

respect to the number of derivatives needed, and (1ii) to
encompass a wide dynamic range in number density and radius.
All of the considerations just set forth interact and usual-

L e g
‘l"‘
s

e ol VR o ol of
. . v 2 v

ly conflict to some degree. Moreover, as shown in later
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the acute nonlinearjities in the physical theories
of the task.
sent means to all these ends is the implosion code ZDIPR (Z~-
Radiator); the

chapter is devoted to a summary of its evolved configuration

sections,
both help and hinder various aspects The pre-

Driven Imploding Plasma remainder of this

and performance over the past year.
A. ARCHITECTURE OF THE IMPLOSION CODE

rationally subdivided into three major
the physics package (FLUIDOTS/TETDOTS),
and the subcycle integrator

the code and the

ZDIPR may be
subroutine groups =
the mesh integrator (GRIDROOT),
(GEARBOX/TETGEAR).
notation appearing in later discussions have been documented

The major portion of

in Reference 1, referred to as the "original formulation®"

for the remainder of this report. The present discussion is

intended to be a topical wupdating of specific points, al-
though some recapitulation is included.

(1) The physics package consists of a plasma model and a
field model. The plasma model employs both ion and electron
temperatures, fully magne=
coefficients. Theromelectric fields and
drift limits on Jz

and flux limits appropriate

a radial flow field and complete,

tized transport

heat fluxes and appropriate speed have

been included from the outset,
to thermal conduction and possible thermoelectric deficien-
cies have been added. The equation=~of=-state and radiation

package is a faithful mimic of CRE results for {onization
and utilizes a four frequency
The

is the electro-

states and chemical potential,
bin "probability-of-escape"”
field model
diffusive option,

radiation transport scheme.

discussed and explored here

which is a good first approximation when

T2
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&2 ;
:% detailed balance of incoming and outgoing waves does not j
f:& ra111. The presently evolved forumlation also has the sin- .
_ﬁ? gular advantage of checking its own validity. -
- (2) The mesh {integrator is now a new continuously~ e
;%; variable=step predictor/corrector accurate through second -
'&i order. Corrector convergence 1is achievegathrough regula~- ‘
ij falsi or replacement to high precision (10 ~). This purely -
iterative convergence scheme eliminates the need for a mesh

:ﬁ Jacobian and the attendant machinery for factoring and sub- V
:; stituting, in contrast toc the present subcycle integrator.
Q% (3) The subecycle integrator (TETGEAR) for the ilectro- f
3 diffusive option requires as 1input, at various t in the %
. subcycle, the material derivatives generated by the physics “
:;ﬁ package (TETDOTS), which in turn requires the advanced mesh é
i? and velocity fields generated at t* by the mesh integrator '
’ (GRIDROOT). Each derivative call by the subecycle integrator .
i{ﬁ thus requires a full update of the mesh to the intermediate é
f;i time pointe=-the primary motivation for the continuously K
~;E variable step integrator. b
)‘ This sort of subcycle derives from the observation that ;
o a spacetime p.d.e. which has the derivative operations re- ‘
E;E presented Dby discrete differences on one domain of depen~ E
'&§: dence appears as a coupled set of o.d.e. on the orthogonal .
h;' domain. The particular case here is that of spatial differ- u
f&ﬁ ential operators, corresponding ¢to finite difference opera- ;
fﬁﬁ tors (derived through conventional or smooth interpolants), !
i?: producing a set of coupled equations on the time domain. In ™
«:3: all such cases the coupling of the time derivates is expres- -
bf&j sed as a Jacobian matrix, implicitly dependent on the mesh X
Eé; used to discretize the spatial derivative operators. Here K
?ﬂ. the ¢time derivatives are the material derivatives {Te. E

o,

- e o -
>
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ee, éz} and the underlying mesh motion {r, r, 5, r} is

completely transparent to the subeycling algorithnm.

For the electrodiffusive field model the subcycle vari-
able set advanced by TETGEAR <consists of iY -{...iT
1 i J 'c 1,3’

cEzJ' ceej"'} a total of 3.4 initial/boundary value
problems with J the number of hydrodynamic cells. The pre-
script "c" indicates evaluation at the spatial cell centers.

All external driving terms enter as a boundary condition on
* o

E
:aiticular diode being modeled. In the environment seen by
TETGEAR, the problem s specified completely by the input
{ilj}, ihe interior material derivatives {*fj 4
matrix (aii/axj). and the intermediate time points =< . f

The combined fluid evolution subroutine HYDROPUSH incor- ¢

porates the three foregoing elements and forms the nucleus

based on the <c¢ircuit equation appropriate to the

}, the coupling

of ZDIPR-apart from startup, diagnostic and graphics mod-
ules. HYDROPUSH is concerned exclusively with the advance
of <FLUID-STATE> over the variable major time step which it
selects as appropriate. The only required inputs are the
common blocks <FLUID-STATE> and <FIELDADVDATA> (containing
the previous time slice of fluid variables and field vari- F
ables) and the appropriate mesh dimension, scale factors and

physical constants, obtained from a variety of sources. The ’
output is an update of <KFLUID-STATE>, and an 1ncremént of }
the variable MSI (Main Step Index) by 1., If a restart file
is desired, it is created for later usé.and assigned a rec-
ord number equal to the MSI. If any severe errors occur in

the advance, dump flles are created to allow examination of

-
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#J intermediate results, and a variety of reports at intermedi-

E% ate phases of the calculation are available as general

L diagnostics. -
i The seqﬁence of processing begins by reading elements of :J
'% the <FLUID-STATE> into <MESHADVDATA> and the subcycle vector S
éé {iYJ}. Once the appropriate data base is inferred a full ;j
o complement of material derivatives is computed, by FLUIDOTS/ ?

HERTZDOTS or in the electrodiffusive mode by TETDOTS. These
material derivatives are then used by STEPPER to select a

Y 1 1 A

. major timestep. For restart purposes, the environment of S
:; either GEARBOX'or TETGEAR 1is output at this point if re- :ﬁ
»{: quested. Then a single subcycle is done (advancing i+?YJ. E
e “Trj and iﬂr"J) and the new FLUID-STATE {s output. The '
*5 iterative refinement of the mesh evolution is now accom- o
? plished within the calls to derivative module. The general ‘E
: structure of HYDROPUSH is illustrated in Figure I.1; the 4
F; details of the timestep selection algorithms are diééussed E
:é in the original formulation. Eq
e ' e
*: Bf MILESTONES AND ROADBLOCKS ;;
i: To date we can report rather firm progress in bringing
Aﬁ? two of the major subroutine groups into a state of develop-

ment which is adequate for the goals set forth above and in
the original formulation. The calculation of self-consis-
tent material derivativeé is now routinely done to very high
- precision. This capability 1is documented below in Chapter
ko II. A singular difficulty in obtaining this result was the
stfong nonlinearity in the Br=2ginskii thermoelectric theory,

but this has now been tamed and at least partially under- :ﬁ
stood as a possible basis for corrections to that theory. Zﬂ
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FLOW OF A SINGLE SUBCYCLE: HYDROPUSH

: v = - 3
Input . and [TI Ez ee] Y at I-th time level

Set major timestep: CFL, CELL AREA CHANGES, SURG

Output RESTART files, if requested

ENTER SUBCYCLE INTEGRATOR

Cl WG DI T Y 2

F[A] Set minor timestep, ti

PUSH PREDICTOR: Yi+1‘0
CONVERGE CORRECTOR: Yi+1(Yi+1)

r[B] Select JACOBIAN, call TETJAC or keep old one

Calculate iterated derivatives §i+1 n (TETDOTS)
’

Advance and correct (GRIDROOT)
4\ (rv J
X

R et

2z B) to selected convergence .

[ Calculate final éIé

Calculate final Gr

= “‘.“‘ L

Calculate final éz with circuit

Model as the sole external driver

—Test step, order & error, recycle as necessary

LRecycle over minor timestep until major timestep is reached

Output the advanced set to the I+l time level, update r, Vr history.

Figure I.1
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X
;:{ Also completely operational is the mesh integrator, documen- :
5{j ted in Chapter III. The development of these new integra- N
“E tion filters grew from the great sensitivity of the subcycle

integration to the space-time jitter in the velocity field.
Their subsequent introduction in a fully implicit implemen-
O tation has improved the quality of the model significantly. ;
>;3 The primary obstacle to efficient operation is the sub-
cycle integrator DGEAR, essentially wunchanged from the ver-
ﬁj sion supplied by IMSL. While ¢the integrator DGEAR offers »
several control paraméters and considerable flexibility in
the integration scheme, the most useful options have been
’(5 the use of explicit Jacobians and the control of the local ‘
truncation error through a variable TOL. The explicit Jaco- -
bian is the most favorable option in ihis hydrodynamic ap- :
plication; but, since the physics detail in ZDIPR demands a -
very expensive analytical -evaluation of this matrix, an
- estimate based only on finite differences 1is needed. We

find that the choice of the differencing algorithm‘is a

AR TR

sensitive one relative to subc¢ycle integrator performance.
The variable TOL provides a natural and consistent means of
specifying time integration parameters, but it does not
split up into separate error bounds for truncation and cor- X
rector, and this causes trouble, The integration scheme can ;
be selected as either an impiicit Adams method of up to it
twelfth order or a backward differentiation method of up to B
fifth order (Gear's stiff method). Both methods are of the
- implicit linear multilevel type énd require the solution of

T

an algebraic system at each interior (subcycle) timestep.

Here the optimal choice between the two seems to fall to

SRS TURAr A
'_“‘ Lt
[ LI

o

Gear's stiff method. The motivation for its use-treatment :
of stiff terms in the heat and field diffusion equations- A
therefore appears well grounded; but the error estimates the
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step size controls, and the dependence on a Jacobian matrix
(and its inverse) for corrector convergence appear to con-
tain some systematic and serious difficulties in this appli-
cation. The problems are being addressed by a variety of
alternétives and the resolution of these questibns will be
best assured by careful further testing.

Despite the difficulties in obtainihg efficient integra-
tion, the model can be fruitfully applied in short simula-
tions. Chapter IV describes the results of one such calcu-
lation meant to examine the early boost phase of the plasma

implosion.
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CHAPTER II

SELF-CONSISTENT CALCULATION OF THE MATERIAL DERIVATIVES
(FLUIDOTS/TETDOTS)

A number of modifications ¢to the original formulation
have been necessary in the course of the code development

over this contract year. These changes have been motivated

YUY VIR LS T Y XYW oat

primarily by the need fér high precision in the difference-
equation image of the time derivatives. The better resolu- g
tion of the global couplings (in space) for each temporally
evolved quantity, as provided by this high precision, has r
been found very helpful in improving the subcycle
integration. _ : : 2

A. STATEMENT OF THE PROBLEM

The physical content of this model has been laid out in

1

4

o

the original formulation and in previous documentst How~- a
ever, in order to clarify ¢the present discussion, the major v
fluid and field evolution relations are summarized below for a
the electrodiffusive 1limit that has been the central focus ﬁ
of recent efforts. The notation is unchanged from that ﬁ
introduced in the‘original formulation. E
If one gives up some information éoncerning the details i

of the diode fields and makes the assumption that the incom- S
ing and outgoing wave components are in detailed balance, =
then the Hertz wave equation can be transformed to a diffu- &
sion equation :j
(s 4

- 79
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1

E = {u . L

- E -3
au uauE} m E:Btln z TEt

'U

—BBTB, [11f1]

(=]
A

h

where E is the dimensionless thermoelectric field, I is a

th
dimensionless c¢onductivity, /¢, E'=E + BB,E = E +

8 "fluid
= a
BB + Eil , and D/D= + B3 ..

The fluid response to thé electromagnetic stresses and

s,
.
L}

-~ ..

T

A

heating is embodied in the relations

oy - 3T J_B pE

. D_y . -I - T __z8,_r
- 5T Vr ; arzn n. ; ;cn + ;n [IITZJ
[ I I
l‘ and
if; D 2 Tu 3 -1
o bt %67 T3Te(VrV)r (Vo(xgd T )+v (8, U )} (3 3n,)
L 2m. T, - T

2 e I e

i.l + (J_<E') + { ) + @ , [11.3a)]
EJ; 37“1 zZ 2z mI Te Rad )
;};
e 2am T -T
o D 2 3y 2% e I
- Dt 1 3TCVeV) + (Snp) 9 (xpa, T+ m ( T ) [11.30]
L\ ‘_‘.
::?: In these expressions ae = Te + 2/381/7’ T = TI + 9Te’ m = mI
ﬁﬂ: * Pmax e’ Xe,I is the thermal conductivity, Te the plasma
= relaxation time, Er the ambipolar radial fieid (with p its

N induced charge density), and Qrad is the net {(local)
: . radiative heating or cooling. The dimensional version of

fields are subscripted with a vector component; dimension-
® less fields are not. The radial electric field is estab-
lished as a solution to an integral equation derived from

'jb the radial component of Ohm's law. The drift-speed-limited
Al .
jq current condition is supplemented by a (nonlinear) change in

L where the local E field requires it.

w
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The (nonuniform) time levels for any variable are index-
ed with a leading superscript; the Lagrangian fluid mesh is
denoted by r, and its material derivatives by a superscript-
ed dot (or dots). Spatial indexing is denoted by trailing
subscript and various‘ cell-to-cell averaging operations are
denoted by an overbar or by angle brackets.

The data base for all the hydrodynamic calculations is

the common block <FLUID-STATE>, containing {N

c
: ! IR XN
8 » P

c%, ; T iéj} and {éEz’J}, the diffusing electric field.
An update of the <FLUID-STATE> and Ez is the central result
of a major timestep. The relationships among the basic
fluid variables on ﬁhe Lagrangian mesh are illustrated in
Figure II.1. The simple ¢two and three point area-weighted
differenciné schemes for such a mesh were discussed pre-

viously. The numbers of cell 1ions ({N.,} are a conserved

. J
vector of ions/cm resident in the (compressible) cell [irJ,
irj”], assuring strict particle conservation and a solution
of the equation of continuity 1limited in accuracy only by
the evolved values of [irJ}. The elements of {NJ} are as-
signed spatial locations given by the cell center position
(defined by the equal area point) ir - (1/2( r +
¢ J J+1
i 2 1/2
s )/2)

»*
In general, at any point ¢t (selected by the subcycle
integrator) within the subcycle [t thi]’
* * *-
{ t’cTIJ cEzJ o ej} - {JTIJ o cj* o ejl in iuch a way that

the 1intermediate fields { rJ Vrj cBeJ sz} are all

consistent with one another. Only ¢the time can enter as a

one must map

* *
generator of PJ and VrJ’ however these fields are
calculated, because of the Lagrangian nature of the mesh,
The calculation of these position and velocity coordinates

is discussed in Chapter III and they will be

2 2 MR .2
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considered given for the remainder of this discussion.
*

Although the V‘,‘J and cBej

coupled problems, a magnetic field <calculation from any

given velocity profile is the pivotal element in achieving

calculations must be considered

the desired self-consistency.
Boundary Variables: Centered Variables: N i
N , . B.. Jransport
c-zj ¢-0j
Coef.
ceoi czi
cﬁ
" fi 1 fie r
oj’ :
[] N ]
I L
P ala L_4__J P
H ] i i+
2o cd, Mesh A
Spacing
Notation

Figure II.1. The Lagrangian Fluid Mesh.

B. THE MAGNETIC FIELD COMPUTATION

If the mesh and its velocity are presumed given, or at
least provisionally established subject to iterative refine-
ment, then there is just one magnetic field profile (and its
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curl, the current density) which 1is compatible with this

mesh and the input electric and temperature fields. Because
of the great sensitivity of the transport coefficients (in
this often highly magnetized model plasma) to the value of

:Bej’ the stability and accuracy of the.fluid integration is
improved considerbly as the resolution of cBeJ is improvedf
This calculation however always introduces a nonlocal
constraint into the model.

For the plane parallei waveguide, one may derive either :
electric or magnetic diffusion relationships from the Hertz é;
potential wave equation in the 1limit of detailed balance Eg
between incoming and outgoing waves. This limit is also E*
equivalent to the neglect of displaéement current relative ?f
to conduction current. Because both E and B are solenoidal, ';
the resolution of the."companion" field (E when B is diffus- ﬁs
ed, B when E is diffused) always involves the calculation of o
the field from its curl. It is this calculation which pro- ES
duces the nonlocal coﬁstraints that supplement the local i}
diffusive =evolution relationships. Whether one chooses g§
electric or magnetic diffusion, it 1is easy to see that this .
nonlocal constraint is always equivalent ¢to a single inte- :
gral equation. :E»

Turning first to magnetic diffusion, the evolution rela- Eﬁ
tion .

2—B - —l—{u-?a (ud B )-éa tn £ - B0 B -3 E_ [II.4] ;E

Dt 98 UnE u u o u 8 ur uth : N

is obtained by recovering the curl of Ampere's law from the Ca

Hertz potential wave equation, writigg J'zsraginskii E, and E#
eliminating 3 E. The fields B, 8,, E, radial coordinate u, }%

time 1, and conductivity I are in the dimensionless ﬁl
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form of the original formulation. The contribution required
from Braginskii's kinetiec theory and transport coefficients
is the constituitive relation

J_ = t(Ez+ BPBQ + E,.) =t E , {11.5]

z th

where I and Eth are functions of Be and the plasma relaxa-
tion time, Tg- 6n its face [(II.4] is a fully local rela-
tionship, but one needs a complete profile Ez(u) given at
all times in order to <calculate the material derivative on
the left. Since Be and 3tB, are the only fields available

)
one must use Faraday's 1law to obtain Ez(u)-IEdO(BTBe), a

nonlocal operation. This forces one to solve an integral

equation for D/DT B viz. [II.4] 1is now an integral equa-

e'
tion for the spatial profile of the material derivative.

P

The value of D/DT Be at usu, depends upon the values estab-
lished on the domain (o, u,) ‘through the field E,(u). Be- i
cause [II.U4] is in fact equivalent to Ampere's law, however,

to solve it as an integral equation 1is to establish that f

profile Jz which satisfies the constituitive relation
[II.5]. The only difference 1is that it is D/DT Be'
than Jz itself, which is adjusted to obtain agreement. One

rather

can equally well view [II.5] therefore as the integral equa-
tion being solved in a magnetic diffusion calculation; the
two are equivalent, interchangeable problems.

For electric diffusion, on the other hand, the evolution
relationship is derived by applying the Laplacian to the
Hertz potential wave equation, eliminating the 3:V2 A
contribution, and 1introducing ([(II.5] as the constituitive
relation. The evolution relation obtained,

-1 ‘A - -
bt Ez” f?; (u"du uauEz) Eo in I atEth Beatar' (11.6]

8L
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is equivalent to [II.4] in all respects. The nonlocal con-
straint however now enters directly 1in the form [II.5] be-
cause the additional needed profile 1is now Be which must be
evaluated from its curl, 4nJ, so one must solve [II.5] as an
inteéral equation in order to estabish the profile bEz/Drf
Having established [II.5] as the needed integral equa-
tion for either form of ihe field diffusion theory, it is
natural to ask whether or not a particular constituitive
relation, in this case Braginskii's, poses a soluble problem
in the practical context of a known discrete mesh, and given
discrete images of the input fields. If an accurate,
unique, and continuous solution cannotA be established on a

given mesh then the constituitive relation is possibly in

its curl, J, are related 1in a
well-known from first principles

the medium; any ambiguity in the
between giving up on a Lagrangian
the accuracy of the constituitive

Using Braginskii's notation

Jz = OBEZ

Ez = E:z * BrBe * Eth
E - L g
AR th,z en, T,z

b with the further reduction

of the "Ohm's law" comprising [II.

error - for what [II.5] establishes 1is that a Be field and
particular way. A result

is that these fields are

related uniquely whatever the particular details imposed by

solution raises the choice
formulation or questioning
relation.

(cf. Reference 2, p. 268

(Eq. 6.18-6.20) and p. 249 (Eq. 4.32 and 4.35)) and caSting
the remaining discussion in CGS units, the axial components

5} can be written

(11.71]

?:
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E = (evrTe) X

(11.8]
7

X = - (117588f10 Te) By

obtained when all the substitutions are carried out. The
coefficients 8%, BY, 8., 6, are functions of the ionjzation

state only. When Ez' Jz. and Be are all negative (the

usual convention in ZDIPR) or all positive, and Br is

negative, the domains of positive rTe weaken the net field
by opposing the applied Ezf The domains of negative rTe,
in contrast, strengthen the net field because Eth is paral-
lel to E . In this way the E tends to oppose, through the
Jz component it induces, changes in the flow Br arising from
the temperature gradient.

Using these results the basic constraint relation [II.Sj

becomes
1 8y + 87 x°
J, - aL(Te,'ne’Be)(Ez B.By*(g .Ty) x I P L (11.9]

with B, = 2/cr f§(2wrlJz) dr,, and x = -(1,7588-10’ Tg) By
making manifest its characterization as a nonlinear integral

equation.
C. APPLICATION OF THE CONSTRAINT RELATION
The nonlocal constraint requires in many cases some new

modifications to the field diffusion due to large and quite
possibly unphysical thermoelectric fluxes.
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In a spatially inhomogeneous magnetoplasma the process

WLV ol TR SISO i N ]

of radial implosion forced by axial currents produces radial
temperature gradients. These gradients feedback either

positively or negativeiy on the originating axial current

(Jz) by means of thermoelectric momentum fluxes arising in

SV e

the magnetized'portions of the annular load. All such ther-

D
B

moelectric momentum transfers originate in differing mean
rates of electron (r-z) gyration (in the local magnetic
field) on the "up hill" and "down hill" sides of any phase
space point. As noted above, the explicit calculation of
these imbalanced mean fluxes constitutes a major contribu-
tion of plasma kinetic theory to the expected response of
the fluid Jz(Ez’Be’Br’Te) in applied electromagnetic fields.

The constraint [II1.9] discussed above can be viewed as a
check or any constituitive relation proposed from kinetic
theory (or another source). If one fails to find a continu-
ous and single-valued soldtion, then the proposed response
Jz(Ez'Be'Br’Te) is suspect or non-integrablef In the course
of testing the present 1D implosion code (ZDIPR) the inte-
gral equation for Jz imblied by Braginskii theory was ex-
amined in this light and found to cause integrating failures
when large temperature gradients were encountered and when
thermoelectric fields began to add to the applied Ez. These

are unfortunately conditions which are quite common in the
implosion solutions examined to date, and it was thus neces-
S sary to find a remedy if any progress was to be made in the

Lt

physical understanding of the current penetration process.

The failure 1in integrating Braginskii's theory manifests

Eg:f itself in a multivalued solution of the J,(r,t) problem when
;}. given a set of profiles (a(r,t), Br(r.t). Te(r,t) and
o
.
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This must be rejected 1immediately as a violation of
uniqueness and a closer examination shows that continuity in
the solution is failing as well. The net result is that for

a given non-~uniform fluid mesh 'there always exists an upper

lating the thermoelectric fields, Eth’ by any implicit
scheme over the spatial mesh. Somewhat less obvious is the
result that this upper limit.depends on the radial flow Br-_
Braginskii's kinetic theory treatment completely decouples
Br and Ethf

It is also easy to verify that the usual validity condi-
tions on Braginskii's theory are not violated when this kind
of failure arises. For example, in one ZDIPR calculation
the thermoelectric field was limited to =~0.03 - B,
ginskii's on a weakly magnetized (w,t, -10_6) interior do-
main of the mesh in order to avoid multivalued roots for sz
On this same domain, the Coulomb logarithm A=9.87; the ther-

mal gradient scale length L=0.2194 (cm) is large compared to

Bra-

the mean free path &=4,795 x 10.3 (cm); and the time scale
for temperature change t=3.356 (ns) is large compared to the
electron relaxation time t_=4.221 - 10”3 (ns). oOn another,
highly magnetized, exterior domain, the thermoelectric field
was limited to ~0.0023 Eth’Braginskli

less stiff temperature gradient L =0.3518 (c¢m), and a very
y

in the presence of a
small gyroradius re~.8u « 10 (cm). In'short it would not
be possible to anticipate this failure on the basis of the
constraints on validity given by Braginskii. Even though
similar kinds of limits to VTe apply in thermal conduction,
the problem here cannot be formulated with reference to only
one process, such as the formation of a heat flux in the
presence of a given magnetic field. Here the difficulty is

limit to the value of |arTeI that can be admitted in calcu-
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,y not local, but global, and arises only when the fluid and -
?? field models are coupled. ' ?
E This limit on the préctical integrability (to some reli- f
able accuracy) of Braginskii's theory is a serious obstacle é
f}: to its inclusion in the implosion model. If one accepts the ?
}; theory as valid and resorts to an explicit integrator, then H
_3 the accuracy will suffer and color the results in a very Q
. subtle way. If one modifies the Braginskii picture explic- -
1# itly to prevent the problem and ¢to allow the more accurate ?
fﬁ implicit integrator then the physical content of the model f
':E may be hurt but the extent and degree of the inaccuracy is ?
g& knownf The source of the difficulty is the very positive
;n: nonlinear feedback of the thermoelectric field on itself,
;;ﬁ and it is worth asking if this should be so.
éi' If the nonlinear Braginskii picture of the thermoelec-
. tric effect is in error as the temperature gradient in-
fﬂf creases relative to Br’ the correct expression for Eth must F
M contain the same symmetries, however it is derived. Since r]
E& the primary source of this effect is the thermal gradient, %
;' one solution is to limit the momentum flux produced by this ;
s gradient while not altering the gradient per se, in common
;;; with similar treatments for heat conduction. Because the |
4C$ magnetic field serves only to redirect the thermally gene- '
‘fvl rated momentum flux and to 1limit the phase space volume ;
ii contributing to the mean flux (sought as a source for Eth)’ ;
;&; a plausible model would be to replace E
E, = (+3.T) 8.(x) ;
th e re’ "7 5
'._‘ ~
e 3
T 8
::f.':- r
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with

1
B, = Flz 3.T)) 8.(x),

where F is an odd, saturating function of 1/e arTe (the
basic measure of source strength) and x-were. In general F
must couple to the flow field Br and to the external field
Ezf The product of separately odd functions, F(1/eVTe) and
B.(x), is preserved by the c¢ross product nature of the
transport.

The general expectation one has for F is that it should
be linear for small values of the argument, and bounded
above for those situations where T/e arTe —> o, The value
F(A) that constitutes this upper bound can be set from the
requirement that no multivalued roots occur in the local
response curve: Jz - a(Ez + BrBe + Eth)' In general one
would expect modifications in Bg.(x) also, but the qualita-
tive form shpuld be the same. At least the B8.(x) dependence
calculated by Braginskii prdvides a reasonably straightfor-
ward method for limiting F(A).

A complete and necessarily elaborate investigation of
this limiting effect is certainly needed, but it {s a very
large effort. In order to achieve the new required coupl-
ings (to the mean flow er and the imposed Ez) one must keep

more terms in the collision integral, retain some nonlinear

;ﬂ- features, and probably include density gradients as well.
. Such a calculation is most fruitful on a large scale, ob-
EQ?: taining corrections to all the transport processes. The
74 choice here, to limit the effective magnitude of arTe’ is ad

¢l
Sl
g

hoc dbut physically and numerically reasonable in the face of
such gross violations of +the electrodynamic constraints

.
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discussed above. Moreover, this 1limit can be incorporated
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smoothly into the other

thermoelectric

......

terms, viz. the

thermoelectri¢ heat flux and the 3rEth required in the élec-

tric diffusion equation, and it can be extended easily to 2D

models.

Thé solution of the
from the mesh interior outward,
the current densities already
ty, ¢, as the next

vector.

integral

additional

Equation [II.9] proceeds

seeking to estéblish. from

known, a local current densi-

element in the solution

The limit is derived by constraining the

dJ

r

YA
SEPTC-(EZ' Be’ B _, Te) < 1'

where ¢ is the added 1local
point, and Jz(Ez, B

the transport theory.

8’ "r

is replaced by (1/e) arTe and

from the constraint on Jé.
the thermal gradient arTe is

spatial domain for all

thermoelectric

current density aq any spatial
B _, Te) is the response curve given by
The saturated amplitude for F(j/eVTe)
a value for A is calculated
If this A value is in [0,1] then
limited to

A 3rTe in that

effects. Limits on

the collisional thermal

flux are

treated separately in a

similar manner, and employ a different limit.

Once implemented, one finds that this limit arises under

conditions

(ExB)r drift
gradient must tend to exceed the
thermoelectric E x B drift

quite easy ¢to

speed (from E

fusion speed of Be;

interpret

th'sze) in

and finally,

(1) the
the given thermal

physically:

radial flow Br‘ or (2) the

speed must exceed the local dif-

(3) the thermoelectric

field must produce a gositive feedback on the current in the

plasma.
fluid annulus for example.

these ¢riteria for the flux

91

This is very much the situation upon closure of the
Particularly interesting among
limit

A is the involvement of
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the new E x B drift speed. It is therefore at least a plau-
sible conjecture that Braginskii's theory produces this
extreme and perhaps incorrect nonlinearity because the Eth
drift is not properly included in the orbit integrals of the

Landau collision term—this collision term in fact neglects

all external fields.

These modifications to Eth have a significant impact on
the physical predictions of the ZDIPR model as well as the
numerical techniques required for either electric or magnet-
ic diffusion., The most significant physical result is the
level of enhénced current predicted on axis when the annulus
closes at high velocity. Under these conditions the (per-
haps small) initial valde of Be in the plasma interior is
amplified by the thermoelectric effect because the tempera-
ture gradient is negative and, since Ez and Eth are there-
fore parallel, a positive feedback on Jz is generatd by Eth,
This produces no more J « E heating because the thermoelec-
tric heat flux will tend to <c¢ool the axis, but it does tend
to increase Be near the axis and accrete incoming plasma on
a radially growing central filament because the resulting
JzBe stress rises to overcome the outward pressure gradient
force, which might ordinarily slow or reflect the incoming
plasma. Of course very large currents on axis tend to mag-
neticaily insulate those imploding regions just outside and
soften the effect. In ZDIPR test runs with the modified E
the axial current peak was still quite high but the cells
outside the ninimum in Te did not tend to insulate as much

as before the effective temperature gradient was limited.

Ln, This produced a more persistent, narrower, and stable peak
-\.l
SQ; feature in the current density profile and number density
ffl profile, indizating a (quite reasonable) coupled compression
b
b
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of particle density and current density. The thermal cur-

rent source simply tries to preserve the ratio Be/n as the
plasma stagnates, a result familiar from magnetic diffusion
theory in the limit of high conductivity quite appropriate
to the hot axial plasma. Alternately viewed, the source
term <« ~B rBr in DBe/Dt, tends to dominate the hot, stagnat-
ing plasma and requires current density to rise inside any
given radius in order to increase the Be value at that radi-
us. In an electric diffusion solution this is done only by
geherating a strong enough electric frfield ¢to support the
needed Jz, and the chermoelectric field (properly limited as
shown above) is the source of this current until the corre-
sponding sources in the electric diffusion equation, viz,
—arEth and —BQTB can build up the "external" field suffi-
ciently to do the Jjob. Such high axial current densities
are likely to produce anode damage in small areas corre-
sponding to the spatial extent of the central current fila-
ment. Their evolution is therfore a high priority in future
work;

A second physical result occurs at the exterior edge of
the annulus where the thermoelectric field tends to cancel,
rather than to enhance, the applied E. Here the limit on
arTe is invoked during compression of the outer layers with
A [0.800 — 0.9001]. This 1is a consequence of the required
odd parity of F (1/e arTe) discussed above, because there is
really no danger of multiple roots when arTe>O and 8r<0.

The limit here forces the plasma model to be less effective

in shielding out the applied Ez and can be expected to alter

the all-important field penetration process when integrated

over the run-in phase of a typical implosion.

e, e =
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D. PROCESSING SEQUENCE FOR THE MATERIAL DERIVATIVES:
FLUIDOTS/TETDOTS

When one combines the foregoing results with the re-
quirements stemming from the basic algebraic structure of
the derivatives, there remains very 1little latitude in the
processing sequence required. The first task is to estab-

* * -

lish the new mesh { rJ, vrj} and the second, the appropri-
*

ate magnetic field cBeJ' These problems are both implicit

requiring the solution of a nonlinear system of equations
arising from the integration filters selected for space and
timef Thess problems are also both coupled, because :Baj
depends on onJ(Ez' Bps VTe) and the mesh itself. As the
only area of choice in the processing sequence, one has
:hererore the option of nesting the iterations for er
cBeJ in one of two ways: velocity loop inside magnetic
field loop, or veloclity loop outside magnetic field loop.
Since the velocity loop is the most critical the preéent
implementation puts {t outermost, the latter option. This
has several advantages for a subc¢ycled architecture. First,
the most recent solution of the mesh problem {.Vr

and

J} at a
previous call becomes a good seed guess for the new source
configuration as well, since it combines all the information
about the system. In contrast, Dbecause the mesh {s very
sensitive to the'local JXB stresses, the new velocity solu-
tion can be far the previous one in the case of arbitrary
chJ which arises when the velocity loop is inside the mag-
netic field loop. Second the Jacobian of the mesh problem
is more nearly band-diagonal if the magnetic field is assum-
ed given. In contrast, the Jacobian for the magnetic¢ prob-
lem is lower-Hessenberg for a given velocity fleld. Third,
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*
the iteration of the mesh problem for fixed { T e ’ ’

c'Ij' ce]
c zJ} requires a fresh set of densities o Ij intermediate
*
velocities e J' thermal gradients, ionization states c9j'

and all active transport coefficients at each evaluation of

the acceleration. In contrast, the 1iteration of the

magnetic problem requires fewer fresh transport coeffi- ;

cients, constant densities and thermal gradients, and no :

equation of state updates. Fourth, the mesh problem has

more latitude in the bouhdary conditions - momentum flux

being legislated only if the Lagrangian zone intercepts some {

fixed wall or the origin 1in radius. In contrast, the mag- i

netic field problem has a firm bdundary condition at the

origin which determines the preferential direction of search ’ ;

as the integral equation is resolved. -
In view of the considerations just set forth, the compu- E

tational advantages of putting the velocity loop outermost ’

are:

(1) fewer total {terations, because the mesh problem
can be solved by "corrector only"™ methods and the magnetic

e

problem resolves quickly for a wide range of "seed" fields *
[
e?zy i
(2) more accurate applicable matrix-based methods for )
* ‘
vrj because the banded Jacobians can be factored more ac- i
- curately, .
'gﬁw (3) fewer total calculations, because the intermediate -
,gﬁ fields needed are fewer for the magnetic loop, and N
if (4) more efficient root searching because of the pre-
AN ferred direction of solution in the innermost loop.
.
ff{ These advantages translate 1into a fully self-consistent
;:; solution of the velocity and magnetic problems in an average Q
;'!— [
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of 5 outer and 6 inner iterations for a total of 30 evalua-

* *
tions of the derivatives D VPJ/DT and chJ'
The magnitude of relative error in the velocity corrector

respectively.

solution 1is usually bounded above by 10-8, over all cells,
while that in the magnetic field cérrector solution is
bounded above by 10-?5. nearly full machine precision. The
errors in the soldtion of these nonlinear difference equa-
tions can be driven to underflow if desired, of course, but
the experience to date is that this level of convergence is
adequate until the hydrodynamic timesteps can be lengthened.

Once the mesh and magnetic field problems are resolved
to a preselected error bound, the remaining tasks are readi-
ly performed in the order dictated by the fluid equations.
Working from the highest velocity moment downward, and froh
the interior to exterior in position domains, the first
calculation 'is that for thermal sources and sinks (V - vr.
Jz . Eéf Qphoto)' This {s followed by the calculation of
dissipative transfers using the flux-limited forms of the

thermoelectric and conduction processes recently developed.

* o * o
From the foregoing, the material derivatives cTIJ and ceej
can be formed. The next calculation is an evaluation (if
. *
needed) of D/Dt v from the mesh configuration and

rj
approprjiate sources; usually it is sufficient to accept the

last value -evaluated in the root search for the *Vrj
solution. Finally, the <calculation of DC*EZJ/DT is done,
using the acceleration field as a source term and coupling
self-consistently to the external c¢ircuit relation with a
relative error of 10-16. The final output is a very accu-

rate picture of these material derivatives.
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E. THE SPATIAL STRUCTURE OF CHANGE

As an example of the kind of processes one must resolve
within the plasma load, Figures II.2, I1.3, and II.4 have
been extracted from the early phaseé of an implosion'calcu-
lation. All three are depicted on the same spatial scale a
2.48 ns after the start of test <calculation. While the
initial configuration was a strictly isothermal (25 eV)
Gaussian density and isoelectric (Ez ~3 StV/cm) profile
expanding about r=0.55 at a low velocity (|8 |[¢ 5f0x10-6).
the later fluid state intercepted these graphs depicts a
velocity field (B8, - Figure II.1) negative over most of the
domains and a strongly skewed Ez profile; with the outer
plasma field of U4.0 StV/cm on order of magnitude than orig-
inally given. Owihg to the electromagnetic stresses, a very
slight crushing is distorting the outer domains of the orig-
inal Gaussian, while the interior domains begin to execute a
rarefaction fan in ignorance of the piston. The exterior
velocities have come down considerably and the electron
temperature on the surface is beginning to rise.

T_ and TI}.2

r’ Ez’ e
Figure I1.2 is c¢ompleted with the self consistent current

From this basic configuration {nI, B

density profile as resolved from the integral equation dis-
cussed at length above. This structure is essentially bar-
ren of any thermoelectfic effects and shows the early forma-
tion of a peak in Jz, drawn in the domain where Ez decays,
due to magnetic insulation effects. The peak value is typi-
cal of the current density one might expect in a stationary
plasma for these conditions and 1is contrasted clearly with

2. T.(r) is not shown in Figure 1I11.2, being essentially
13dist1nguishab1e from Te(r).
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that current actually drawn as one finds more magnetic¢c insu-

lation in the exterior. Note also in this context coinci-

dence of the peak in J; with the sharp negative excursion in
Br at r-0.67 cm. The relative magnitude of current densi-
ties interior to the main peak, and the more gentle downturn
in magnitude over the interval [0.49, 0.61] in r, reflects
the same magnetic insulation proceés obtéihed for a gentler
velacity fleld gradient in a smaller interior IEZI.

The next graph [Figure II.3] shows the spatial structure
of the important source terﬁs in the electron temperature
rad’ being dominated
by thin recombination continfuum and Bremmstrahlung and
hence reflecting the density, is broad in space. It also

equation. The radiative loss profile Q

proclaims its thin character by exhibiting a mild kink where
the density compression is beginning. In contrast, the
ohmic¢ heating profile QJ-E is clearly'peaked‘at the inner-
most "insulation front"™ pointed out above; while, at the
exterior, the corresponding insulation front peak has blend-
ed with the general upturn in ohmic heating associated with
the high Ez, low density region, the so-called corona plas-
ma. At this point, therefore, the electromechanical shock
has just begun to emerge from the "vacuum" and to accelerate
the load. The structure of the shock heating profile deV
clearly exhibits this, underwriting as it were, the wider
structure in the ohmic heating curve. The acceleration
profile |Dvr/Dt| completes the graph and shows a minimum
coincident with the slowest portion of the load. At this
minimum the ¢contest between Incoming Ez with its attendant
JzBe stress) and the pressure gradient is played out; while
inside it, the rarefaction fan dominates the motion.
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When all these effects are included with the other dis-
sipative processes of thermal and electric diffusion the
plasma response contained is that of Figure II.4, The re-
maining material derivatives are shown and one can.see read-
ily the various regions of change and the primary sources in
each., Outside the slowest velocity (r>0.6), the ion and
electron temperatures are being driven apart by ohmic heat-
ing, but both are rising due to compression and ohmic ef-
fects. In the dense interior, radiation and expansion are
cooling the fluid, making field diffusion marginally faster;
but in the wunderdense interior a slight preponderance of
ohmic heating arising from the weak initial field begins to
warm the plasma. The material derivative of Ez, on the
other hand, shows the processes of field penetration. Just
inside the peak in Jz the primary source of 1ncom1n§ Ez is
the term — ( rB)Be. which represents an inductive recoil —
allowing more Ez to the conductor when the flow field rises
to produce more insulation. This recoil effect is superpos-
ed with normal diffusion add in fact dominates the peak éz
shown at r-0.65f On the exterior, where the gradient rBr
and the gross acceleration are somewhat weaker, the diffu-
sive term proper is competitive as is also the cancellation
rate term E- T9.nz; but at the shock itself the Ez is moving
past the moving fluid predominantly because of the ac-
celerations it gives the fluid. As the velocity field is
boosted inward, it would appear that the Ez profile will
simply follow this acceleration front along and completely
penetrate the load.

In the calculation of this structure of change, it is
obvious that an accurate resolution of Jz is central to all
of the important physics Jjust discussed: the insulation
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. front, the recoil source for E and the regions of ohmic
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3# heating. It is very important to know the interplay of all
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the efrécts discussed above and to incorporate the non-local

- character of the magnetic 1insulation process in the field
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CHAPTER III

THE INTEGRATION OF THE FLUID MESH TRAJECTORIES

In the original formulation of ¢this implosion model,
correction of the mesh was intended to occur outside the
subcycle integration, allowing the explicit calculation of
mesh positions inside the subcycle derjivative routine itself

for any input time argument. However, this scheme allowed R
too much noise to enter the velocity profile because the
feedback from thermal to flow reservoirs tended to come too

late. As a means of controlling such noise one is naturally

SIS IS

led to a predictor/corrector scheme, of necessity fully
implicit. On the other hand, within a subcycle process, the
totally érbitrary time coordinate voids the use of customary
formulas for the mesh predictor/corrector because the time
levels are no longer evenly spaced.

A. CONTINUOUSLY VARIABLE TIMESTEPS AND FILTER THEORY

K S PN Irs B PR

In order to address the problem of uneven meshes, con-

- * -

sider a sequence of time 1levels (i ?t<1t< t) together with K

some corresponding velocity and acceleration values {1-1u, :j
* i=- * * .

iu, u, : 13, ia, a}l. The forward most time, t , can be i

parameterized by a step size ratio =

* { i -1 »

e = (t - "t)/ ("t - " ) ~

- Y

relative to the step fixed, defined in the history array, h= ’f
i i-1 w2

t - i A o

If one seeks an integrating filter of the form 13

- * - ;\

*y = Aiu+Ai 1u + h(eB a+Bia+B1 1a). [II1.1]) <

0 1 -1 0 1 s

: {




i AN AL A
P [

ir N

a

. on g

DO DM M

L

S

how can the five coefficients be related to the error char-

acteristics and the timestep ratio €? It is useful to ad-
dress this topic with a straightforward extension of the
transfer function as commonly defined in Fourier or z-trans-
form theor&. Let the accelerations be limited to harmonic

components é-iA eJ“(t-it) and seek a particular solution

In

u-iAoutejw(t-it). the filter is then charcterized uniquely

by the ratio

Aout h(z . e§1 + BO + B1Z
— - = - [111.2]
in z - AO - A1z
where 7 = erh.

For a perfect integrator [III.2] must equal 1/jw and the
selection of coefficients {A,, A,, B-,, B,, B,} must be a
compromise process which produces optimal accuracy and
stability as a function of the step ratio €. Let the phase
t=wh be an expansion parameter and require that the perfect
integrator be approximated through some order in . One

must have

sB_1 2% + Bo + By z.1 n
1 = J¢ - = + E(olz 1) (111.3]
2z - A0 - A1 z
where the error term E is bounded by cn, n23 if one wishes a
second order or higher integrator. Since ze-elCE the

sequential orders in  arise by expanding the right hand
side of III.3 and equating real and imaginary parts. This
yields at each order a new element in the set of constraints
on the coefficeints in the formula, viz.

0(z%3: o0 -1 - Ay = A,
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5 ,
0Cg'1: By + By = A, + e (1 -B_,)
:' 0Cz%1: By = By = e - 2B_, + (1 - B_,)
e ottt s (2" + 3¢3 - ea (1 v a) - (1 -e)al
g ' -1 be(e + 1)(1 + eA,) ’
b3
These expressions already contain some eliminations,
¢§§ e.8., A,, but as a set they specify all of the formula as a
ﬂjﬁ function of A,. In the <case that e=1 these constraints
ifk reduce to a wéll-known class of formulas due to Hamming.
\ The new extension here is to arrange the theory in such a
ff' way as to produce uniform truncation error (olg?]) in the
jﬁf integrating filter for a continuum of timestep ratios e.
o As in the fixed-step case, the choice of A, represents a
i trade-off between accuracy, stability and noise propagation.
t;i The introduction of the z" constraint could provide a uniqué
kﬁ; function A,(e) but, after some investigation of the quartic
o equation involved, it appears the real solutions with the
)b property A,(0)=0 may not exist. This property is importrant
fﬁj because it assures precise continuity of the velocity value
ﬁa *u forward from 1u. i.e., the filter collapses to an identi-
:;Z ty transformation as e—éo when A, also vanishes. A second
'j point in favor of avoiding the " constraint is that such
jiﬁ% high accuracy usually pushes one onto the stability bound- .
f:& ary. In examining the present fomulas over the entire A,/e E
ﬁfﬁ domain for those cases with A,~t! and e~1, the response 3
2 curve showed a small imaginary part, corresponding to a %
.ﬁ¢ better approximation to the perfect integrator. These re- .
%E gions are known stability boundaries for the fixed step E
ijj formulas of Hamming, therefore, such high accuracy can be }
- N
- 5
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traded here {n order to guarantee stability. A third point
in favor of leaving A, free is the possible control of noise
propagation. A priori it is of interest to produce an inte-
grating filter with a sharp or even tunable low pass re-
sponse because the 1local hydro cell sizes determine those
frequencies too high to be physical. Thé choice A,(e) may
have some bearing on this question as well. The character
of the response curves will be discussed at more length in
the next section.

The filters éompared in 1later sections differ in only
one respect - the functional dependence A,(e). They are
arbitrarily designated Class A and Class B, repreéenting two
qualitatively distinect types of integrating filter.

The Class A filter 1s generated by the rule A; = 0.25 €
and is characterized on (0<e<1.2) by three features: '

(1) coefficients of laréest magnitude remaining posi-
tive for all ¢,

(2) eB_i

(3) B,>0 over most of the e domain.

uniformly smaller than B, for all e,

This particular filter does not mix *a and ia with equal
weights until €>1.2 and has ia predominating by a factor of
2 or more for e<1;

The Class B filter is generated by a more complicated

rule:

A1 = [(-0.4 + 0.2 f(e)] ¢

with f(e) a smooth step function [0<e<1.2] bounded above by
1 and below by O. This rule is selected to track, roughly,

a peak in the value of ¢B at small e until the maximum

-1
blends into a general rise for ¢ =~ 0.45. Thereafter the

rule keeps A; well above the stability boundary at -1 for
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,k% €e<1.2. In comparison this Class B filter is charcterized on

S 0<e<l.2 by

oY (1)  positive eB_, for all e,

- (2) €eB, exceeding B, for larger ¢>1.05,

Sé (3) B,<0 over the domain studied. ‘

5; Hence the Class B tiltér tends to use the history as a

0 derivative estimate for the surge (B,>0, B,<0), while the

. Class A filter tends to average previous accelerations., The

it following sections are devoted to the comparison of these

:ﬁi integration filters and to the implications of these results

EE for the hydrodynamic code. i
B. RESPONSE STABILITY AND ACCURACY

If the transfer function 1is decomposed into real and
imaginary parts one obtains a picture of the propagation
characteristics of the filter on the frequency domain defin-

t§i ing the time'dependence of the acceleration, a{(t). The more
:3; useful object however is the scaled difference of the trans-
,). fer function from the perfect integrator 1/jw, i.e., H(Z) =
:bﬁ: J;Aout/Ain 1. A comparison of R, H(%) and Iy H(g) for vari-
{:; ous values of ¢ (between the two <classes of integrators
Eg defined above) i3 a helpful summary of their differences.

The typical frequency response one finds is illustrated iﬁ
Figures III.(1-2) for the Class A integrator and in Figures
III.(3-4) for the Class B {integrator. The plots show the
real part (R) imaginary part (I) and modulus (M) of H(g) at

two values of € in each case. For €=1.1 the Class A formula

has a slightly broader pass band 1in the real part bdbut a
flatter low frequency response. The Class A formula shows a
larger magnitude in the imaginary part for all g, but this
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imaginary part is negative at high frequencies. For €¢=0.5
the Class B formula retains f{ts rather slowly decaying low
pass character, while the Class A formula exhibits a mild
rise in the real part before assuming the usual downturn at
higher frequencies. Both integration filters have similar
negative imaginary parts. From this comparison (which per-
sists for all e) one might expect the Class A formula to be
slightly more susceptible to noise but more accurate and the
Class B formula to be more likely to propagate growing para-
sitic solutions due to the more positive imaginary parts.

A second analytic tool is the relative stability criter-
ia for each of the integrators. This test is somewhat limi-
ted in its scope because the root conditions apply only to
even meshes and, while solutions for e#1 exist, the inter-
pretation i{s not particularly clear. Thé first root condi-
tion is independent of timestep and'involves only A, and A,.
It requires essentially that the denominator of the transfef
function possess no zeros for z>1. For the Class A formula
the roots at e€=1 are z={1,0, -0.25}; for Class B, z={1.0,
0.2}. In both <cases absolute stability 1is assured. The
second root condition involves the phase also and speaks to
the stability of propagated errors, the relative stability
of the scheme. Since phase values greater than 0.2 are not
likely to be used on a single step =0.2 is taken as the
phase in the test. The corresponding roots at e=1 for the
Class A formula are z={1.219, =-0.2256}; while for class B,
z={1.221, 0.2091}., Again 1in both cases, relative stability
seems assured with Class A perhaps a bit more stable as
expected.

It is a well-known result that stable consistent methods

are convergent integrators for even timesteps. Certainly

113

PERPUE R I )

g 4 ;™ e e -
Tia ¥ oo Bog ot gt o o gt gty Y

- S v e T _* P




Sradil maAresel and gread gr-Shdiiodh S e fh it s S Iaihe ~ St T e iabat SuA - SECEL A S S et S A 4 Y T W T T T e

WV WL WU W S W W T TV

Y
b
~

one expects this property to generalize smoothly for the
contihuously variable step methods examined here. The best
kind of test is therefore an integration of some known and
(preferably) relevant problem. For the integration of im-
ploding trajectories the natural test bed is the Gaussian
implosion a self-similar isothermal (in space) fully time
dependent hydrodynamic flow. To summarize the fluid densi-

ty, temperature, Lagrangian‘posic1on and flow velocity, and

acceleration are specified by:
, N -rzlrz(t)

n(r, t) = 9 € s

’ mre(t !

)
T(t) = To/u(r).
172

r(t) = r(0) u""(1) (for r (t) also), (IIr.s]
vie) = v(o) u3(0) (at r(e)),
P(t) = a(0) u"3/2(1) (at r(r)),

where the generating function

u(r) = == T (111.s1
i' E

Y. o+ [1 + (1 + YE)T]2

depends on the initial velocity scale and kinetic to thermal
energy ratijio,

T = Kit/2
2,2 T

YE = 8 To/mPOKi j:t«,:.q
: RS
: Ky = V(o) - 2/r (0) {iI1.6] kx}
- .r'_‘:i‘
a(o) = 2 To/mrs(O). ~—
g 114 Y
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{0 YE and, using the

filter [(III.1'] with V(t) calculated analytically from
[III.4-6], comparing the known velocity to the filter output

The test consists in selecting K

and ihe known position to the corresponding second intergal
of (III.1], viz.

*r = Ip eh(*u + iu)/a [111.7]

This kind of check tests only the filter, the analytical
accelerations remove any errors propagated when the filter
is combined with some aigorithm for corrector convergence
e.g., regula-falsi. A fully 1implicit scheme for this prob-
1em.does exist and will be examined later if it is of inter-
est. As a second exercise the acceleration is perturbed by
a sinusoidal ripple, a-arlu(t) + 4$sinuwrt. This allows a
check of the frequency response In terms of complete
throughput as opposed to the single-step analysis above.

The timestepping for these checks 1is controlled'by a
relative tolerance for single step velocity changes which
progressively slows the step as the turning point is reached
due to ever-increasing accelerations. For very small toler-
ances the step usually sinks to a given floor sufficient to
limit the number of steps over a full implosion to about
30,000. The relative error in r and V is reported every 0.1

ns — Y_. and Ki being appropriate to 60 ns overall implo-

sion/exgansion times. The time supremum (in absolute value)
of r and VvV errors at full step, and 1/3-, 1/2-, 2/3-step
test subcycles is also accumulated on every push.

The results are summarized in Tables III.1 and III.Z2.
The Class A formula is decidedly superior on all counts over
g’ Ki)' The

Class B formula wins only in the suppression of very high

a wide domain in the implosion phase space (Y
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= TABLE III.1

v
b Gaussian Implosion Trajectory Integration
- at Single-step 6V/V = 5.0°10""

e = -

w7 ox Xfilter xanalyt:ical

.-,;'. :': Class A Class B

N (<., Yo)

E § v s v

e . sup (?r) sup (67)s sup (-;r) sup (67)s
e t t t t

W

e (0.2, 0.1) 2.10°107° 5.60°10™2 3.52+10~° 9.90+10-2
- (-0.1, 0.1) 1.86-10"° 6.87+10-2 3.10-10-% 0.121

=2 (-0.1, 0.01) 1.01-10"" 0.304 1.55-10""% 0.553
>4 (=0.1, 0.001) | 7.59-10"" 0.558 1.11-10"°% 1.137
:.:L'.: sRelat:‘.ve velocity errors are dominated by the béhavior near the turning
point, elsewhere they are comparable to (8r/r).

{8

v TABLE III.2

' Noisy Gaussian Implosion Trajectory Integration

(xk = =0.2, Yg = 0.1, Same Tolerance]

- § - Noise Amplitude: 0.15

;’-::

iy Ripple cycles/ Class A Class B

o timestep sup (8r/r) sup (8xr/r)

st t t

W,

WY A -l -l
< .0411 3.155+10 9.31°10

N,

2 .2405 3.39.10°" 4.54+10""
-N .8065 2.28.107° 9.92:10"" *
1 4.032 4.14-10™" 5.17-107"
N 8.064 1.75-10"° 6.84-10"" *

N

e 43.20 2.93-107" 1.24-10"3 °
D 86. 30 1.50-10™3 1.83-10"% °*
AN

[
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5 frequency noise above the Nyquist frequency and hence of 3
" only minimal interest. The Class A formula exhibits isolat- <.
ﬁ ed resonances in this domain while the Class B first damps .
A .
them and then admits a single large one. -
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CHAPTER IV

v

I3

SNOWPLOW FORMATION -- THE BOOST PHASE

ok KO

r

At the close of Chapter II the spatial structures in the

Sd 8

material derivatives of temperature and electric field

[

R W SR

pointed out some of the fundamental responses of a plasma
load to its pulse power environment. Following that same
example for a short time the present discussion focuses on

the evolution of the snowplow or magnetic piston as a pri-

mary feature of the run-in plasma. These thoughts are ne- :
cessarily preliminary and such results as can be obtained -

will be followed up in greater detail as the code's opera-

NSV

tion and efficiency are improved.
One can see the emergence of the snowplow most clearly
in the sequence of 1ion density and electric field profiles

2o

shown in Figure 1IV.1. The configuration at 3.3 ns is 7
scarcely distinguishéd‘from the example of Section'II.E atc ;j
2.48 ns except that the exterior field has now risen to ?g
around 50 StV/cm. By 10.8 ns, however a new density peak =
has emerged and the extérior domains are strongly crushed by 3
the electromagnetic stresses; the Ez field has followed the f;
compression and risen significantly in magnitude. The final ﬁ;
state, at 18.8 ns, shows the new density peak inside the &
original and-a signifcant distortion of the Ez profile with g
an exterjor field of 167 StV/cm. Ky
If one characterizes the E_, profile by 1its half- %

-—d

relative-amplitude point r then this point is found to

1/2E°
move {in quickly, successively overtaking comoving fluid

P
4

i

zones in response to the impressed sources for Ez. In the

-,
]

early times r is just inside the budding or emergent new

-
¥
L

1/72E
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i;J density peak Tn peak’ while in the last configuration it has
- . ’

?j moved well inside this peak. The slowest-velocity point
;~ remax' and the half-amplitude velocity point (relative to
b the outer surface velocity) r are also seen to move in a

S _— 1728
' similar manner, overtaking the calculation zones as part of

a general acceleration or "boost" front which is propagating
through the plasma.

o A more detailed graph of the model plasma at 18.8 ns
(Figure IV.2) shows the fully developed snowplow configura-
o tion. The' current density now peaks more sharply, at a
: deeper radius and the width of the current carrying layer
cj has doubled over that in the intial state. The progress of
.? the boost front is marked by the slowest velocity point
e (0.476 cm) as compared to 0.62 em at 2.48 ns. In step with
N this are both r, ,. and ry,28 at -0.52 cm (in from -0766 cm
e . at 2.48 ns) and the velocity profile for r>0.5245 cm is
flattened in conjunction with a quasi-equilibrium configura-

_{% tion of the ,stressesf The ion and electron temperatures
‘i}: show a peak at the location of the compression max_aul which
fE is in turn essentially coincident with the peak acceleration
_) and located just outside the boost front, c¢f. Figure 1IV.3.
iﬁ; The minimum acceleration magnitude 1lies inside the minimum
fﬁﬁ velocity magnitude as in the earlier graphs and both 1lie
ﬁi inside the temperature peak associated with the shock. The
Y radiative loss profile (cf. Figure 1IV.3) now reflects this
~2§; in its triple peak: the interior peak in T,, the density
ﬁ} maximum, and the product of decaying density and rising
.;2 temperature in the near corona. It is still dominated by
Tb thin continuum and Bremmstrahluhg.

fﬁf The field penetration process is still dominated by the
Egz recoil mechanism -(aTBr)Be at the boost front but is given
7

o
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by a mix of effects 1inside and outside this point. The
configuration of 3, E, and Br has not changed its chabacter o]
since its formation at early ¢times, c¢f. Figure II. 2 The o
structure in the vicinity of the field decay radius r is ;L

1/2E
just moving across the plasma 1load dragging the Ei field

o

Bl

inward at a rate fast compared ¢to that of pure diffusion.

s b 5

Spatially the penetration can be characterized by an

2

invariant ordering of radii with perhaps time dependent

relative separation among them. Innermost is the minimum of

maxg’ next outermost the minimum ff

; followed by ¢the field decay radius r :
max8 1/2E oy
and completed by the onset of quasi-equilibrium flow rQSV 3

The J profile and the velocity half amplitude r1/28 tend to o

1/2E° - %° that no one ordering of these Ry

radii is appropriate.

acceleration magnitude r
flow speed r
oscillate around r

The onset-or‘quaéi-equilibrium flow at rQSV can be ex-~ o
pected to continue into the corona plasma. The linear equi- :

librium near‘rst arises when V(nT)-aB(E% + Eth + BB); the %;
saturated equilibrium will onset when 9V(nT) <~B + enecs .ﬁf
obtains as Ez grows in the "vacuum" region and 8B is held to gf
moderate levels by the cap [8]| ¢ [Byg| and the saturation of ~—
Jz at larger radiusf The complete ordering of radii, %‘
apparently invariant during the early run-in or boost phases '{
1s then {rmaxé < rmaxB < r‘1/215: < rQSV < rCorona}f The R
calculation of the equilibrium density profiles falling on :
this domain may prove a valuable modeling asset both in 'b

L]
I

simple applications and in the smoothing and rezoning of

implosion problems. In this c¢onnection however it i{s worth

Yoy

noting that the full nonlinear complexity of the thermoelec-

A
tric field must be included as can be seen in Figure IV.4, ﬁJ
Any such calculation of a quasi-equilibrium {nI. B, J} given i
N
L
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typical {Te. B, Ez} will find E a 30-50 percent effect as

th
one approaches the corona. Note also the impact of the

thermoelectric field on the structure of E. The main peak
in E is due to recoil and diffusion; thé inward foot is
mainly due to recoil; but the outer wing comes from o Eth
and the magnitude of the effect is beginning to approach the
saturated or flux-limited domain (discussed in Section II.C)
at the outer radius of this calculation. One may perhaps
take some consolation in the fact that thé saturated domain
of Eth does not have a great impact on E but the thermo-
electric effect is rather important in these plasmas.

The completion of this rapid penetration of Ez into the
plasma load has not yet Dbeen calculated but the limiting
factors will be the disappearance of the sharp gradient in
velocity and the weakening of the accelerations generally as
the insulation front is allowed deeper into the load. 1If
what occurs here is corroborated by wider numerical exeri-~
ence then a general picture of the boost phase of a run-in
can be formulated. One would expect an early field pene-
tration determined by a contest of rates and the initial
density profile — Ez (with Jz peaked at an insulation
front) will penetrate the load until the local velocities of
the interior are comparable to the outer surface., At this
time the penetration will become mainly diffusive - at rate
characteristic of the radiatively cooled interior plasma not
the hot corona however. When ,the penetration settles down
into diffusion, the width of the effective current carrying
layer may be quite large although the stresses may not be
reduced proportionately because of the peaked nature of the
J profile near the insulation front. The investigation of
this process is therefore a high priority for future work.
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CHAPTER V
SUMMARY OF PART II

In the foregoing discussion, the structure and perfor-
mance of the electrodiffusive model of a 1D imploding plasma
radiator has been detailed. Some modiricétions to the orig-
inal formulation have becoﬁe necessary in order to achieve a
self conslistent picture of the fluid motiv« and more modifi-
cations are clearly needed to the ({ntegration package in
order to obtain a useful performance with respect to DNA
objectives.

On the‘methodological side, a new integrator for the
fluid mesh has been developed and applied successfully to
known trajectories. Certain discretization difficulties in
the Braginskili theﬁmoelectric field model have been identi-
fied in the context of E-field diffusion and removed by the
development of a simple flux 1limit on the thermal gradient
used as a source of this field.

From the physical qtandboint. the novel E-diffusion
formulation has shown a sensible performance over short time
intervals and resolved some fundamental features of the load
acceleration processes in a speculative but plausible init-
ial condition for present DNA sponsored experiments. The
novel equation of state {i{nvolving generalized electroﬁ tem-
perature ee has been shown a useful formulation as wellf
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